

Abstract

- Neural network mask-based beamforming techniques have improved the performance of multichannel noise robust ASR significantly.
- Spectral masks have not been helpful in the single-channel case.
- We propose a student-teacher learning paradigm for mask estimation to fill out the gap between single-channel and multichannel speech enhancement

BLSTM Masking Network [Heymann+, 2016]

Layer	Activation	Dimension			
Input	_	513			
BLSTM	Tanh	256			
Feedforward 1	ReLU	513			
Feedforward 2	clipped ReLU	513			

Table: I: Masking Network Architecture

- $Y = (\{\|y(t,b)\|\}_{b=1}^{B} | t = 1, \cdots, T)$: sequence of T-length noisy speech magnitude spectra
- $IBM_X(t, b) \in \{0, 1\}$ and $IBM_N(t, b) \in \{0, 1\}$ at each time-frequency bin (t, b): ideal binary speech and noise mask target respectively
- $w_{\rm X}(t,b) \in [0,1]$ and $w_{\rm N}(t,b) \in [0,1]$ at each time-frequency bin (t, b): predicted speech and noise mask respectively
- $loss = loss_X + loss_N$ $loss = \frac{1}{T*B} \sum_{t,b} \sum_{v \in \{X,N\}} \operatorname{CE}(\operatorname{IBM}_v(t,b), w_v(t,b))$ where, $CE(a, a') \triangleq a \log a' + (1 - a) \log(1 - a')$

Mask-Based Beamformer [Heymann+, 2016]

- $\bar{w}_v(t,b) = \text{Median}(\{w_{m,v}(t,b)\}_{m=1}^M), \text{ where } v \in$ $\{X, N\}, w_{m,X}(t, b) \text{ and } w_{m,N}(t, b) \text{ are speech and }$ noise mask for each channel m respectively.
- $\mathbf{\Phi}_{v}(b) = \sum_{t=1}^{r} \bar{w}_{v}(t, b) \mathbf{y}(t, b) \mathbf{y}(t, b)^{\mathrm{H}}$, where $v \in \{\mathbf{X}, \mathbf{N}\}, \mathbf{y}(t, b) \in \mathbb{C}^{M}$ and $\mathbf{\Phi}_{v}(b) \in \mathbb{C}^{M \times M}$
- $\mathbf{f}_{\text{GEV}}(b) = \operatorname{argmax}_{\mathbf{f}(b)} \frac{\mathbf{f}^{\text{H}}(b)\mathbf{\Phi}_{\text{X}}(b)\mathbf{f}(b)}{\mathbf{f}^{\text{H}}(b)\mathbf{\Phi}_{\text{N}}(b)\mathbf{f}(b)}$

Mail: {aswin, schen146, shinjiw}@jhu.edu

Student-Teacher Learning for BLSTM Mask-based Speech Enhancement

Aswin Shanmugam Subramanian, Szu-Jui Chen, Shinji Watanabe

Center for Language and Speech Processing, Johns Hopkins University

Table 2: WER of HMM-GMM ASR System

P	aram	ete	ers				WER	$\overline{\text{Dev}}$ (%)	WER	Test $(\%)$
	$\lambda_1 \lambda_2$	2	λ_3	epoch	Train data (ASR)	BLSTM Mask	real	simu	real	simu
1			-	-	all 6ch noisy	_	21.40	23.22	35.63	31.98
2			-	14	all 6ch noisy	Baseline	28.99	28.05	40.98	35.50
3			-	7	all 6ch noisy	Teacher	24.91	26.00	40.26	35.73
4 1	/3 1/	3 1	_/3	6	all 6ch noisy	Student	25.95	24.66	35.50	29.98
$5 \mid 0.$	25 0.2	25 (0.5	12	all 6ch noisy	Student	26.56	26.19	36.33	31.36
6 0.	35 0.1	5 0	.50	3	all 6ch noisy	Student	23.34	23.11	33.11	28.30
$7 \mid 0.$	35 0.1	5 0	.50	3	all 6ch noisy	Student with real	23.42	23.55	32.64	28.88
8			_	_	all 6ch noisy + 5th ch enhanced data from baseline all 6ch noisy +	Baseline	22.07	23.37	34.02	30.41
9 0.	35 0.1	.5 0	.50	3	5th ch enhanced data from baseline all 6ch noisy +	Student	19.78	20.76	30.66	26.60
10 0.	35 0.1	5 0	.50	3	5th ch enhanced data from baseline	Student with real	19.79	20.85	29.80	26.66

- - the development and evaluation data was enhanced using

- Masking gives significantly better scores in all four metrics.
- No considerable difference in the scores amongst the masking models.

•	Th
	imp
	AS
	and
ŀ	Ou
	bac
	bas dat
	uat

CENTER FOR LANGUAGE

Conclusion

- ne proposed student-teacher paradigm proved the performance of a GMM-HMM SR system from both original noisy speech l the baseline masking.
- r preliminary experiments on a strong ASR ckend improved performance over the seline masking but not the original noisy

WWW: http://www.clsp.jhu.edu