Student-Teacher

JOHNS HOPKINS

UNIVERSITY

Abstract

« Neural network mask-based beamforming
techniques have improved the performance of
multichannel noise robust ASR significantly:.

« Spectral masks have not been helptul in the

single-channel case.

= We propose a student-teacher learning

Y = ({0 =1,

paradigm for mask estimation to fill out the
cap between single-channel and multichannel
speech enhancement

BLSTM Masking Network
[Heymann+, 2016]

Layer Activation Dimension
Input - 513
BLSTM Tanh 256
Feedtforward 1 ReLLU 513
Feedforward 2 clipped ReLLU 513

Table: 1: Masking Network Architecture

T'): sequence of

T-length noisy speech magnitude spectra

- IBMx(t,b) € {0,1} and IBMy(¢,b) € {0,1} at

each time-frequency bin (¢, ): ideal binary speech

and noise mask target respectively

= wx(t,b) € 0,1] and wy(t,b) €

0, 1] at each

time-frequency bin (¢, b): predicted speech and
noise mask respectively

« loss = lossy + lossy

loss = 75 2 1p 2ovexny CE(IBM,(t,0), w,(t, b))

where, CE —a)log(l — a')

= Wy(t, b)
{X, N}, wyx(t,b) and wy, n(t, b) are speech and

(a,d') = aloga + (1

Mask-Based Beamformer
[Heymann+, 2016

= Median({w, (%, 0)

M), where v €

noise mask for each channel m respectively.

{X,N}, y(t b) € CM and ®,(b) €

- where v €

®,(b) = Zwv(t b)y(t,b)y(t,b)"

(CMXM
£ (0) @x(b)f (D

- fopv(b) = argmaxg, SOL MO g
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Mask-Based Beamformer Cnt’d

+ (Pn(b)) " x(b)E(D)

— \f(b)
- WOt b) = £ (b)y(t, b), where fory(b) is the

beamforming filter and 2™ (¢, b) is the
multichannel enhanced signal

» single-channel enhanced signal,

r)(t,b) = wx(t, b)y(t, b)

Student-Teacher Model

i

Input Beamformed Signal

= Dataset: 1 channel track in CHiME-4
) -

Noisy Signal

Teacher Model:

1 -
loss = T B ; CE(IBMx(t,b), w

Student Model (Additional Loss Term):
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Student Model with Real Data:

loss. for real

loss =

Alossg + Aolossy + Aslossy  for simulation

Experiments

« Training: 1600 (real) + 7138 (simulated) - use all 6¢h data
« Dev & Test: 3280 & 2640 respectively - equal real and
simulated noisy utterances.

« HMM-GMM ASR system - Kaldi CHiME4 recipe
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Figure: WER vs Epoch for Different Parameter Combinations

» Best validation loss - not necessarily gives best

word error rate (WER).

« Choosing the epoch based on the WER of the

development data seems to be a better criterion.

Table 2: WER of HMM-GMM ASR System

= Table 2

Parameters WER Dev (%) WER Test (%)

A1 Ay A3 epoch Train data (ASR) BLSTM Mask | real simu real simu

L - - - - all 6¢h noisy - 21.40 23.22 35.63 31.98

2 - - - 14 all 6¢ch noisy Baseline 2899  28.05 | 40.98 35.90

3 - - - 7 all 6¢h noisy Teacher 24 .91 26.00 | 40.26 35.73

411/3 1/3 1/3 6 all 6¢ch noisy Student 25.95 24.66 35.50 29.98

510.250.25 0.5 12 all 6¢h noisy Student 26.56 26.19 36.33 31.36

60.350.15 050 3 all 6¢ch noisy Student 23.34 23.11 | 33.11 28.30

70.350.150.50 3 all 6¢h noisy Student with real 23.42  23.55 32.64  28.88
all 6¢h noisy +

8 - - - - 5th ch enhanced data from baseline Baseline 22.07 23.37 34.02 30.41
all 6¢h noisy +

910.350.150.50 3 5th ch enhanced data from baseline Student 19.78 20.76 | 30.66 26.60
all 6¢h noisy +

10 0.350.150.50 3 5th ch enhanced data from baseline Student with real 19.79 20.85  129.80 26.66
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Discussion

(rows 4-7):

« The training data for ASR not enhanced

« Student models performed better than both the teacher
model and baseline

« Student models don’t perform better than the
non-enhanced noisy speech.

= Table 2 (rows 8-10):

- 5t channel data enhanced using the baseline masking
model is included as part of ASR training

« The performance improved significantly compared to
using the original noisy data in the all conditions when
the development and evaluation data was enhanced using
our best student models (rows 9 and 10).

« WER improvement for the real test set was observed
when real training data was included while training the
mask (row 10).

Speech Enhancement Scores
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« Masking gives significantly better scores in all

four metrics.

« No considerable difference in the scores amongst

the masking models.

Conclusion

« The proposed student-teacher paradigm
improved the performance of a GMM-HMM
ASR system from both original noisy speech
and the baseline masking.

« Our preliminary experiments on a strong ASR
backend improved performance over the
baseline masking but not the original noisy

data.
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