Speech Enhancement using End-to-End Speech Recognition Objectives Aswin Shanmugam Subramanian¹, Xiaofei Wang¹, Murali Karthick Baskar^{1,2}, Shinji Watanabe¹, Toru Taniguchi³, Dung Tran³, Yuya Fujita³ YAHOO! JOHNS HOPKINS ¹Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD, USA UNIVERSITY ²Brno University of Technology, Brno, Czech Republic

Abstract

- Denoising and Dereverberation systems usually optimized with signal reconstruction objective.
- Issue 1 Can be trained only on simulated data
- Issue 2 Not application oriented
- Alternative Optimize with automatic speech recognition (ASR) objective.
- Contributions of the paper:
- Check how joint optimization of far-field denoising and dereverberation with ASR objective as a single network performs in terms of enhancement objectives
- See which enhancement metric correlates well with ASR metric
- Learn to predict important hyper-parameters using the data

Dereverberation Subnetwork

- Based on weighted prediction error (WPE) method.
- $\mathcal{Y} = (\{\mathbf{y}(t,b)\}_{b=1}^B \in \mathbb{C}^M | t = 1, \cdots, T)$: sequence of T-length M-channel noisy speech spectrum
- dereverbed signal: $\mathbf{d}(t,b) = \mathbf{y}(t,b) - \left(\mathbf{R}(b)^{-1}\mathbf{P}(b)\right)^{\mathsf{H}} \mathbf{\tilde{y}}(t-\Delta,b), \Delta:$ prediction delay, $\mathbf{\tilde{y}}(t - \Delta, b) \in \mathbb{C}^{ML}$: delayed and stacked input with filter order L.

•
$$\mathbf{R}(b) = \sum_{t} \frac{\tilde{\mathbf{y}}(t-\Delta,b)\tilde{\mathbf{y}}^{\mathrm{H}}(t-\Delta,b)}{\sum_{m} |\bar{d}(t,b,m;\theta_{\mathrm{dry}})|^2/M} \in \mathbb{C}^{ML \times ML}$$

•
$$\mathbf{P}(b) = \sum_{t} \frac{\tilde{\mathbf{y}}(t-\Delta,b)\mathbf{y}^{\mathrm{H}}(t,b)}{\sum_{m} |\bar{d}(t,b,m;\theta_{\mathrm{dry}})|^2/M} \in \mathbb{C}^{ML \times M}$$

- Neural network with learnable parameter θ_{drv} used to predict $d(t, b, m; \theta_{\rm drv})$
- $\mathcal{D} = \operatorname{Dry}(\mathcal{Y}; \theta_{\mathrm{drv}})$

Beamforming Subnetwork

- Beamformed signal: $x(t, b) = \mathbf{f}^{\mathrm{H}}(b)\mathbf{d}(t, b)$
- Parametrized multi-channel Wiener filter: $\mathbf{f}(b) = \frac{\mathbf{\Phi}_{\mathrm{N}}(b)^{-1}\mathbf{\Phi}_{\mathrm{S}}(b)}{\beta(b) + \operatorname{Trace}(\mathbf{\Phi}_{\mathrm{N}}(b)^{-1}\mathbf{\Phi}_{\mathrm{S}}(b))} \mathbf{u} \in \mathbb{C}^{M}$

³Yahoo Japan Corporation, Tokyo, Japan

- $w_{\rm S}(t,b;\theta_{\rm fcs}) \in [0,1]$ and $w_{\rm N}(t,b;\theta_{\rm fcs}) \in [0,1]$
- $\beta(b) \in \mathbb{R}_{>0}$ is the trade-off factor between speech

Experimental Setup

- Training Data: 2ch simulation data from REVERB
- Evaluation Data: REVERB 8ch & DIRHA Living Room Array - 6ch real data
- E2E ASR system ESPnet REVERB recipe

Co

(5) STOI, (6) WER and (7) SRMR.

annalation as officients		CD	ΤΤΟ		DEGO	STOT
orrelation coefficients	SRMR	UD	\mathbf{LLR}	r w segsink	PESQ	5101
WAR (= $100 - WER$)	0.48	-0.57	-0.57	0.71	0.78	0.77
MUSHRA: PAR	0.59	-0.76	-0.42	0.74	0.84	_
MUSHRA: OQ	0.06	-0.38	-0.39	0.49	0.67	_
		-	-			

Our dereverberation subnetwork implementation is based on DNN WPE module from NTT-CS Labs https://github.com/nttcslab-sp/dnn wpe

ASR Performance

	Dereverbe	eration	Beamformer	REV	ERB Real	DIRHA	
end Type	Filter Order Estimation	Method	Method	Room 1 Near Far		LA Array	
-	-	-	-	23.9	26.8	55.3	
peline	N	DNN-WPE	-	16.4	18.5	41.3	
	Ν	DNN-WPE	BeamformIt	11.0	10.8	31.3	
E2E	N	WPE	-	18.0	19.8	42.3	
	Y	WPE	-	15.1	16.9	36.9	
	Ν	WPE	MVDR	8.7	12.4	29.1	
	Ν	WPE	PMWF	9.7	11.8	27.9	

Discussion

• ASR objective method considerably degrades LLR but significantly improves SRMR.

• PESQ and STOI - well correlated with WER

• E2E approach - significantly improves ASR performance on challenging DIRHA data. • Filter order prediction seems to be based on the room size and not the microphone position • Higher filter order chosen for real data

	REVERB Simulated					REV	ERB Real	DIRHA	
\mathbf{de}	Room 1		$Room \ 2$		$Room \ 3$		$Room \ 1$		TA Ammaa
	Near	Far	Near	Far	Near	Far	Near	Far	LA Arruy
r L	9	9	4	4	4	4	9	9	9
tage	87.1	82.6	44.4	50.7	93.1	92.5	71.0	70.4	70.4

Conclusion

• Speech enhancement using ASR objective effective on most enhancement metrics. • Proposed distortion weight estimation performs well on the DIRHA ASR task. • Future work: (1) apply on more realistic and challenging environments like CHiME5, (2)Subjective evaluation.

Acknowledgement

WWW: http://www.clsp.jhu.edu