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ABSTRACT

Weighted-prediction-error (WPE) is one of the well-known dere-
verberation signal processing methods especially for alleviating
degradation of performance of automatic speech recognition (ASR)
in a distant speaker scenario. WPE usually assumes that desired
source signals always follow predefined specific source priors such
as Gaussian with time-varying variances (TVG). Although based on
this assumption WPE works well in practice, generally proper pri-
ors depend on sources, and they cannot be known in advance of the
processing. On-demand estimation of source priors e.g. according
to each utterance is thus required. For this purpose, we extend WPE
by introducing a complex-valued generalized Gaussian (CGG) prior
and its shape parameter estimator inside of processing to deal with
a variety of super-Gaussian sources depending on sources. Blind
estimation of the shape parameter of priors is realized by adding a
shape parameter estimator as a sub-network to WPE-CGG, treated
as a differentiable neural network. The sub-network can be trained
by backpropagation from the outputs of the whole network using
any criteria such as signal-level mean square error or even ASR
errors if the WPE-CGG computational graph is connected to that
of the ASR network. Experimental results show that the proposed
method outperforms conventional baseline methods with the TVG
prior without careful setting of the shape parameter value during
evaluation.

Index Terms— Single-channel Dereverberation, WPE, com-
plex generalized Gaussian, reverberant speech recognition, shape
parameter

1. INTRODUCTION

Reverberation severely degrade the performance of far-field auto-
matic speech recognition (ASR) by distorting the complicated struc-
ture of the speech spectrum. By applying speech dereverberation,
the corruption of speech signals is alleviated to some extent, result-
ing in better ASR performance [1–3] as well as improving percep-
tual quality. The weighted prediction error (WPE) method [4] and
its extensions [5, 6] have been state-of-the-art techniques to consis-
tently decrease ASR errors in reverberant conditions by suppressing
the late reverberation to a large extent. In this paper, a generic exten-
sion of WPE to improve dereverberation performance is proposed.

The original WPE [4] and its deep neural network (DNN) ex-
tensions [7,8] (DNN-WPE) are based on maximizing the likelihood
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given a Gaussian with time-varying variances (TVG) as a source
signal model (known as a source prior). Instead, the use of other
source modelings for WPE such as Laplacian [9] and more generic
parameterized super-Gaussian models [10] were also proposed and
were reported to improve dereverberation performance in signal-
level criteria. ASR performance can also be improved as shown
in our preliminary experiment described later. However, selection
of a proper source model in advance of dereverberation is still a
challenging problem. To deal with the problem, we realize WPE
with complex-valued generalized Gaussian (CGG) as a differen-
tiable neural network containing source model estimator as a sub-
network determining the shape parameter in CGG when process-
ing. This framework can be applied to both of the original iterative
WPE [4] and DNN-WPE [7] cases because the formulation using
CGG [10] can be introduced into the original formulation with mi-
nor modification and is still differentiable as well as the original
ones.

Estimation of the shape parameter of CGG in WPE should be
executed blindly; i. e. without knowing the desired source signal.
Wakisaka et al. [11, 12] proposed a blind shape parameter estima-
tor for targeting speech sources in speech enhancement tasks. This
method estimates the shape parameter of the generalized gamma
distribution via a speech kurtosis estimation assuming stationary
noise signals and non-speech periods can be easily estimated. How-
ever, the reverberation to be suppressed are not stationary. T. Yu et
al. [13] also proposed a denoising method where the weight of the
speech prior in a maximum a posteriori schema is estimated based
on speech-to-noise estimation, which is also difficult to estimate in
the dereverberation scenario. A Student’s t-distribution based dere-
verberation [14] for a simultaneous optimization of the filter and
the parameters of the distribution including a shape parameter via
computationally heavy iterative updates based on an EM algorithm
is also proposed.

Instead, we introduce a shape parameter estimator as a sub-
network of the (DNN-)WPE with CGG. The estimator itself is not
with iterative updates, and thus is not computationally heavy rela-
tively. Another advantage of the proposed estimator is that it can
be trained in application-oriented objectives such as ASR as well as
signal-level objectives; hence further improvements of the perfor-
mance can be expected if the application task is specified.

In the remainder of this paper, firstly a derivation of WPE with
CGG (WPE-CGG) is introduced. The extension for DNN-WPE
by using CGG (DNN-WPE-CGG) is also described. Secondly, the
proposed combination with the estimator of the shape parameter
of CGG as a sub-network is explained. In experiments, we check
the effectiveness of the proposed estimator of the shape parameter
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without knowing the ground truth of it.

2. GENERALIZED WPE WITH SHAPE PARAMETER

2.1. Generalization of WPE

To explain our proposed WPE as a neural computational graph,
firstly this sub-section introduces a generalized formulation of the
WPE and WPE-CGG which is one of its examples proposed in [10].
WPE-CGG assumes complex-valued generalized Gaussian models
(CGG model) as a source prior and sparseness of the distribution is
parameterized by its shape parameter. The formulation only con-
siders a set-up based on the single source/microphone case. Note
that it can be easily extended for multi-microphone cases. The fol-
lowing WPE-CGG formulation [10] is re-organized with reference
to that of independent vector analysis shown in [15].

Let xn,f ∈ C be an observed STFT coefficient at time index n
and frequency index f . Desired dereverberated signal ŷn,f ∈ C is
estimated using L-dimensional filter vector wf ∈ CL as:

ŷn,f = xn,f −wh
f x̄n,f , (1)

where x̄n,f = [xn−D,f , xn−D−1,f , · · · , xn−D−L+1,f ]t is the L-
dimensional past observation vector with delay D. ·h and ·t denote
Hermitian transpose and general transpose of a matrix, respectively.
Frequency index f is omitted in the remainder of this paper for sim-
plicity if not required since the following formulation of WPEs con-
sider signals independently of frequency index. In WPE, the desired
signal is assumed to follow the zero-mean complex Gaussian prob-
ability density function (PDF)NC(yn; 0, λn) as follows:

yn ∼ NC(yn; 0, λn) ∝ e
− |yn|2

2λ2n , (2)

where λ2
n is the variance of the distribution to be also estimated in

optimization.
In the generalized WPE, we assume the following general cir-

cular PDF p(|yn|; Φ) with parameters Φ instead of eq. (2):

yn ∼ p(|yn|; Φ) ∝ e−G(|yn|), (3)

where G(r) is a real-valued function (r ∈ R≥0). If G′(r)/r(,
g(r)) is monotonically decreasing on r ≥ 0, where G′(r) denotes
the derivative ofG(r), the corresponding PDF e−G(|yn|) represents
a super-Gaussian [10, 16, 17]. g(r) will appear in the solution of
the update equation as a weighting function, and the example of the
actual function form will be discussed later.

The filter vector w in eq. (1) can be estimated by minimizing
the negative log-likelihood via majorization-minimization (MM) al-
gorithm. The derived update rule for generalized WPE is reformu-
lated as follows:

λn ← |ŷn| (4)

R←
∑
n

g(λn)x̄nx̄
h
n (∈ CL×L) (5)

r←
∑
n

g(λn)x̄nx
∗
n (∈ CL) (6)

w← R−1r, (7)

where ·∗ denotes the conjugate operation. λn ∈ R≥0 is originally
introduced as an auxiliary (latent) variable in the majorization step,
which becomes the magnitude of ŷn as a result. R and r are the

accumulated auto-correlation matrix and vector with the weight-
ing function g(λn) introduced in the super-Gaussian, respectively.
Eq. (4)–(7) and eq. (1) are iteratively updated I times (I is previ-
ously determined) and ŷn is initialized as ŷn ← xn before starting
this iterative loop.

This formulation shows that we can choose any super-Gaussian
models for the desired source signals by merely changing the
weighting function g(λn) in eq. (5) and eq. (6) while keeping the
other updates the same. On the other hand, in case of the original
WPE, only TVG model is assumed and the weighting function
gtvg(·) is fixed to

gtvg(λn) = 1/λ2
n ← 1/|ŷn|2, (8)

i.e., the inverse of the estimated power of the desired signal. It is
known that TVG is not always a suitable model [10] and therefore
proper source models should be chosen depending on the condition.

As an example of source modeling other than the TVG model,
by assuming complex-valued generalized Gaussian (CGG) with
zero mean as a desired source model, the PDF of the source signal
yn can be written as:

yn ∼ Ncgg(yn; 0, α, β) ∝ exp

[
−
(
|yn|
α

)β]
, (9)

where α and β denote the scaling and shape parameters of the PDF,
respectively. The CGG PDF represents a super-Gaussian if 0 <
β ≤ 2 and smaller β yields a more sparse distribution. β = 2
corresponds to a Gaussian with a time-invariant variance (not TVG)
and β = 1 corresponds to a Laplace distribution. From eq. (9), the
CGG weighting function gcgg(λn) is derived as follows (see [15]
for more details of the derivation):

gcgg(λn) = βα−βλβ−2
n ∝ λβ−2

n 0 < β ≤ 2. (10)

Note that the constant factor βα−β will be canceled out in eq. (7),
and we can only use λβ−2

n for the weight function gcgg(λn). Al-
though the super Gaussian is not well defined when β = 0, by
considering the equation forms of eq. (8) and eq. (10), the weight-
ing function gcgg(λn) is analytically connected with the weighting
function gtvg(λn) when β = 0. Thus, this paper uses the following
generalized weighting function:

g(λn) = λβ−2
n ← |ŷn|β−2 0 ≤ β ≤ 2 (11)

This weighting function g(λn) can be continuously changed from
TVG to a time-invariant Gaussian via a Laplace distribution by
changing the shape parameter β with 0 ≤ β ≤ 2 in eq. (11).

2.2. DNN-WPE with CGG (DNN-WPE-CGG)

All of the updates in WPE-CGG explained in the previous sub-
section are based on differentiable operations, and therefore WPE-
CGG can be formulated with a DNN the same as WPE-TVG [18,
19]. In this section, we explain the DNN extension of WPE-CGG
by connecting to other networks such as long short-term memory
(LSTM) or replacing part of it.

In the original DNN-WPE [7], which is the DNN version of
WPE with TVG (DNN-WPE-TVG), the power at each TF bin of the
desired signal is explicitly estimated using a DNN (EstPower(·))
instead of the iterative update of estimation of the desired signals in
eq. (4) as follows:

λ2
n,f ← {EstPower(X)}n,f , (12)
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where we recover the frequency bin index f and {EstPower(X)}n,f ∈
R≥0. X ∈ CN×F is an input signal matrix whose (n, f)-element
is xn,f = {X}n,f where N and F denote the numbers of the
time and frequency indexes, respectively. DNN-WPE-TVG uses
gtvg(λn,f ) = 1/λ2

n,f as a weighting function in eq. (5) and eq. (6).
The iterative loop in the original WPE is replaced with a non-
iterative procedure with eq. (12)→ eq. (5)→ eq. (6)→ eq. (7)→
eq. (1).

DNN-WPE-TVG can also be generalized using the generalized
formulation in Section 2.1 by replacing the weighting function g(·).
As one of the generalizations, DNN-WPE with CGG source mod-
eling (DNN-WPE-CGG) can be easily realized by using g(·) in
eq. (11) instead of gtvg(·). Eq. (12) can be replaced as follows:

λn,f ← {EstMagMask(X)}n,f · |xn,f |, (13)

where {EstMagMask(X)}n,f ∈ [0, 1] is a mask estimator sub-
network for the magnitude estimations. The replacement can be
done because the domain of λn,f is limited to 0 ≤ λn,f ≤ |xn,f |.

As a result, the weighting function value g(λn,f ) introduced in
eq. (11) for DNN-WPE-CGG is calculated as:

g(λn,f ) = λβ−2
n,f ←

[
{EstMagMask(X)}n,f · |xn,f |

]β−2

.

(14)
In the equation, desired output values of {EstMagMask(X)}n,f
do not depend on the values of β. Accordingly, the same trained
parameters of {EstMagMask(X)}n,f can be used even if the value
of β is changed. This characteristic is important in cases where the
value of β is dynamically varying in a task e.g. among utterances.

We can use uni- or bi-directional LSTM (LSTM or BLSTM)
networks as EstMagMask(·) as well as DNN-WPE [7] or neural
beamforming [20, 21].

2.3. WPE-CGG/DNN-WPE-CGG with β estimator

The shape parameter β of CGG in eq. (11) or eq. (14) can be also
estimated by a β estimator sub-network as follows:

β ← EstBeta(X), (15)

where β is estimated for each utterance and EstBeta(X) ∈ [0, 2].
The sub-networks EstBeta(·) can be embedded into the DNN-

WPE-CGG network with EstMagMask(·) at the same time. In
that case, we can share a part of EstMagMask(·) with EstBeta(·).
Based on preliminary experiments, the last hidden state vector hN
of the BLSTM of EstMagMask(·) (gotten from the layer before
the last fully-connected layer) is used for calculation of the output
of EstBeta(·) as follows:

EstBeta(X) = 2 · sigmoid (WβhN + bβ) (16)

where Wβ and bβ are a learnable matrix and a bias vector esti-
mated during training.

In the case of WPE-CGG, where we do not use EstMagMask(·),
we replace the last hidden state hN in eq. (16) with the average of
the outputs (average pooling) across time of a LSTM h̄ such as:

h̄ =
1

N

∑
n

{LSTM(X)}n , (17)

where {LSTM(X)}n denotes the output vector of an LSTM at time
index n.

2.4. End-to-end training of networks

The parameters of the β estimator network EstBeta(·) in eq. (15)
can be trained in an end-to-end (e2e) way, i.e. backpropagation
based on criteria such as errors or distances between ground truths
and outputs of the whole network for each utterance as well as those
of the mask estimator network EstMagMask(·) in eq (14). The
criteria for the training in our case can be chosen from either signal-
level or ASR-level. For signal level criteria e2e training, a parallel
signal dataset comprising of pairs of a noisy input audio signal and
a corresponding desired output signal is used. For ASR criteria e2e
training, pairs of a noisy input signal and corresponding transcrip-
tion are required.

We can also train sub-networks separately as in the original
DNN-WPE [7]. For the case of EstBeta(·), we may prepare
ground-truth β from the desired output signal using estimation
methods of β of given signals following CGG [22]. However, espe-
cially appropriate settings of ground-truth β for tasks such as ASR
themselves are still a problem to be investigated, because resid-
ual reverberation and ambient noise, even in ideal dereverberated
signals, affect the ground-truth β values.

In this paper, we focus on the effectiveness of the introduction
of the β estimator sub-network. Detailed analysis for the way it
should be trained will be performed in the future.

3. EXPERIMENTS

To evaluate the effectiveness of the proposed WPE method, we con-
ducted ASR experiments on reverberant speech using the REVERB
dataset [1]. Comparisons of the ASR performance between the con-
ventional WPE, WPE-CGG with fixed β (the shape parameter) and
the proposed WPE-CGG with the β estimation described in Sec-
tion 2.2 are performed by measuring word error rate (WER) of the
ASR result for each condition.

3.1. Conditions and Setup

Evaluation, validation (development) and training speech data were
taken from the REVERB dataset. Here we report the results of the
single-channel real noisy reverberant speech set “Eval/Real”, which
was recorded in real conditions (recorded in a meeting room having
reverberation time of 0.7s). The rest of the single-channel simulated
and another real noisy reverberant speech sets was used for valida-
tion. The single-channel simulated noisy reverberant dataset is also
prepared for ASR training combined with the 83-hour Wall Street
Journal (WSJ) corpus [23] recorded in clean conditions. In these
datasets, speech is highly reverberant, while the background noise
is mostly stationary. All of the recordings are sampled at 16 bit and
16 kHz.

As for ASR backend, we use a feature-to-character ASR (E2E-
ASR) network comprised of a hybrid combination of connectionist
temporal classification (CTC) and attention-based encoder-decoder
model [24, 25]. The input acoustic feature is 80-dimensional log-
mel-filterbank taken from 257-dimensional STFT coefficient ana-
lyzed with 400-point-length and 160-point-shift Hanning window
and 512-point fast Fourier transform (112 points are zero-padded).
The encoder part of E2E-ASR consists of the two initial blocks of
convolutional layers followed by three output gate projected bidi-
rectional LSTM (BLSTMP) layers with 1024 units. The location-
based attention mechanism is used. The decoder consists of a sin-
gle LSTM layer with 1024 units followed by a linear layer with
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(a) Noisy observation. (b) WPE-TVG. (c) WPE-CGG with es-
timated β (= 0.80).

Figure 1: Examples of the processed reverberant speech signals
(“Far,” id: t21c020c, 1.5-4.0 s, 0–2000 Hz ).
the number of output units corresponding to the number of distinct
characters. The word-based RNN language model proposed in [26]
is used during recognition.

In the preceding WPE network as a frontend, 1-layer BLSTMP
with 300 units and 300-dimensional projected output followed by
one fully-connected layer with sigmoid activation is used for the
mask estimation sub-network EstMagMask(X). The prediction
delay is D= 3 and the filter length L is 10 or 40. The number
of iterations in the original WPE is 2. The input STFT analysis
condition is the same as that of the ASR backend as mentioned.

The frontend WPE with the sub-network(s) and the backend
E2E-ASR networks are separately or jointly trained. In the sepa-
rated case of the training, mean-squared error (MSE) of log mag-
nitude of the output STFT is used as the training objective while
ASR errors are used the same as E2E-ASR in the joint case. For
the separated WPE network training, a parallel dataset consisting
of the same simulated noisy utterances and the corresponding clean
utterances is used for the training. The batch size is fixed as 18 and
10 in case filter length L=10 and L=40, respectively. The sep-
arated E2E-ASR (with no frontend) is also trained with the same
training dataset as for the joint training. To regularize the ASR sub-
network, we randomly choose single-channel data on whether to
pass through the frontend WPE network or directly to the backend
E2E-ASR network. All of the networks are implemented based on
the ESPnet toolkit [27] with a recently developed multichannel ex-
tension function [28].

3.2. Results

The WERs of the ASR experiments are shown in Table 1. Lower
WER means better ASR performance. In the table, WPE-CGG
and DNN-WPE-CGG denote the WPE methods without and with
sub-network EstMagMask(X), respectively. “est./MSE” and
“est./ASR” represent the objective of the training of EstBeta(·)
and EstMagMask(·) are MSE of the signals and ASR, respectively.
The column “Fixed B/E” indicates the use of E2E-ASR baseline
i.e. the backend trained without the frontend in the first line of
the table for a fair comparison of the frontends whereas the column
“Joint training” shows WERs of the frontend and backend networks
trained jointly. In the case of “Fixed B/E” and “est./ASR”, the pa-
rameters of all of the network are first jointly trained and those of
the E2E-ASR backend network are then replaced with those of the
E2E-ASR baseline. “Near” and “Far” denote the distance between
a speaker and a microphone for the recordings, which are around
1.0 m and 2.5 m, respectively.

Examples of processed signals are shown in Figure 1. As can
be seen, WPE-CGG with estimated β suppresses late reverberation
better than WPE-TVG does. For instance, reverberation of the third
harmonic structure indicated by a yellow dotted rectangle in Fig-
ure 1(c) is well reduced.

Table 1: WER(%) on REVERB evaluation/real datasets comparing
(DNN-)WPE-CGG with fixed and estimated shape parameter.

Frontend Filter Shape Fixed B/E Joint training
length param. β Near Far Near Far

- - - 23.2 26.9 23.2 26.9
WPE-CGG L = 10 β = 0.0 21.8 25.4 22.1 24.2

β = 0.5 21.2 23.0 21.8 23.3
β = 1.0 21.5 23.1 22.5 23.4
est./MSE 21.6 23.1 - -
est./ASR 21.3 23.4 20.7 22.8

DNN-WPE-CGG L = 10 β = 0.0 21.3 25.3 23.4 25.5
β = 0.5 21.5 24.1 21.6 23.6
β = 1.0 20.1 23.8 22.1 22.8
est./MSE 20.8 24.4 - -
est./ASR 20.8 23.6 20.6 23.3

WPE-CGG L = 40 β = 0.0 23.0 24.7 20.5 23.6
β = 0.5 20.2 22.5 18.5 20.2
β = 1.0 20.0 22.5 21.3 20.5
est./MSE 20.3 22.9 - -
est./ASR 19.9 22.5 18.0 21.8

DNN-WPE-CGG L = 40 β = 0.0 20.6 24.4 21.2 21.9
β = 0.5 20.2 22.6 20.4 23.0
β = 1.0 19.6 21.5 20.0 24.2
est./MSE 19.7 22.5 - -
est./ASR 19.6 22.0 20.5 21.8

In Table 1, we can compare WPE-CGG with using fixed shape
parameter β with the conventional WPE (β = 0.0). In most of
the conditions, properly changing β improves WERs, sometimes
greatly e.g. from 23.6 % to 20.2 % (β=0.5) in the case of “Far,”
WPE-CGG with filter length L=40 (Joint training). But the best
β is not consistent among the conditions. Therefore, estimation of
single and the best β across conditions in advance seems difficult.

In all of the conditions, the proposed WPEs with EstBeta(·)
outperform the conventional WPEs (β=0) in the same analysis con-
ditions: regardless of the type of the frontend (WPE-CGG or DNN-
WPE-CGG) and length of the filter. In most of the conditions, the
proposed method gives better or similar WERs to the WPEs with
the best fixed β. These results show our proposed WPE can esti-
mate proper β for each utterance as expected. The averages and the
standard deviations of the estimated β (est./ASR) are 0.68 and 0.06
when L= 10 and 0.54 and 0.10 when L= 40, respectively. The
estimated values of the β depend on the filter length as expected in
Section 2.4. The range of the estimated values are around 0.5 and
this seems to be adequate. The use of the ASR objective and that
of the signal-level objective result in similar WERs. Joint training
of the proposed WPE and the ASR backend brings further improve-
ment of WERs in most cases. The WER 18.0 % of the proposed
WPE-CGG (L= 40, “Near”) is approaching the REVERB chal-
lenge best results (16.4 % [1]) despite the simple end-to-end system
trained with the small amount of data. However, in case of L=40
and “Far” of it, the WER is worse than that of the fixed β, probably
due to over-fitting of the ASR backend.

4. CONCLUSIONS

Generalized weighted prediction error (WPE) dereverberation
method with varying source prior distribution according to the de-
sired source signals is proposed. The conventional (DNN-)WPE is
extended with minor modification of the update rule by introducing
complex-valued generalized Gaussian (CGG), and the connection
of the resulting WPE-CGG as a differentiable neural network and
a sub-network for blind estimation of the shape parameter of CGG
realizes the proposed method very simply. ASR experiments show
the proposed method outperforms the conventional WPEs without
tuning the shape parameter in advance.
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