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ABSTRACT

Keywords: hidden Markov model, flat start, embedded re-estimation, forced alignment,

group delay, short-time energy, sub-band spectral flux, syllable, HTS

The most popular method for automatic speech segmentation is embedded re-estimation

of monophone hidden Markov models (HMMs) after flat start initialization, followed by

forced alignment. This method may not yield accurate boundaries. To address this issue,

short-time energy (STE) and sub-band spectral flux are used as acoustic cues to correct the

boundaries. STE and sub-band spectral flux cannot be used directly for detecting boundaries

because of local fluctuations, and thus group delay smoothing and root cepstral smoothing,

respectively are used to smooth them.

The syllable is the fundamental unit of production. Any speech utterance is thus made

up of a sequence of syllables. The acoustic energy between syllables is significantly lower

than at the middle of a syllable. Boundary corrections are first made at the syllable level.

Embedded re-estimation of monophone models is then restricted to the syllable level rather

than the entire utterance. These models are more robust as re-estimation is performed on

shorter segments of speech. Forced alignment is performed within the syllable to obtain

phone level segmentation.

Essentially signal processing for detecting syllable boundaries and HMMs for acoustic

modeling of phones work in tandem to obtain accurate segmentation at both phone and syl-

lable levels. Considering phones and syllables as basic units, HMM based speech synthesis

systems (HTS) are built with the proposed segmentation method. Listening tests indicate



that there is an improvement in the quality of synthesis compared to automatic HMM based

segmentation.
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CHAPTER 1

Overview of the Thesis

1.1 Introduction

The main aim of this thesis is to emphasize the importance of acoustic cues in segmentation

of speech. An automatic hybrid segmentation algorithm which uses hidden Markov models

(HMMs) and signal processing cues in tandem to produce accurate phone level segmentation

is proposed. This segmentation algorithm can be used to segment the training corpus for a

text-to-speech (TTS) system.

Segmentation of the speech corpus at syllable/phone level is an important phase in many

speech processing applications, including training of TTS systems and automatic speech

recognition (ASR) systems. Especially, speech synthesis requires very accurate and consis-

tent segmentation [1, 2].

A TTS system takes text as an input and artificially produces corresponding human-like

speech as output. The input text is first converted into a sequence of sub-word units like

syllables/phones using letter to sound (LTS) rules. Waveforms are concatenated as in unit

selection synthesis [3], or models are concatenated as in statistical parametric synthesis [4]

to produce speech corresponding to that of the text. The training data for building a TTS

system consists of a set of utterances spoken by a native speaker of the language along with

the corresponding text transcriptions. It is essential to find the boundaries of sub-word units

in these utterances to use them for synthesis. The process of determining syllable/phone
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boundaries is called segmentation. Figure 1.1 shows a Hindi utterance segmented at the

syllable and phone levels. Panel A shows the waveform. Panels B and C show the syllable

and phone transcriptions respectively. Panel D shows the spectrogram. The thick solid ver-

tical lines in Figure 1.1 correspond to syllable boundaries and the thin dotted lines represent

phone boundaries.

Fig. 1.1: A sample Hindi utterance segmented at the syllable and phone levels

It is very tedious to perform segmentation completely manually. Traditionally, HMMs

[5, 6] are used to aid the segmentation process. Forced alignment [6], which exploits the

knowledge of the phone sequence, is performed to obtain boundaries using HMMs. HMMs

provide reasonably good boundaries but are not good enough to build high quality TTS

systems [2, 7]. Thus, boundary correction algorithms are necessary.

Boundary correction techniques like [2, 8–10] require significant amounts of manually

segmented data from the language to learn boundary models. There is a growing demand

for building TTS systems for more languages. For low resource languages, it is hard to get

manually labeled data from acoustic phonetic experts.

In this work, an attempt has been made to perform boundary correction using two acous-

2



tic cues - energy and spectral change. Signal processing techniques are used to extract

boundary information from the acoustic cues and hence it is not completely data driven. In

this work, an algorithm is proposed which combines HMMs with knowledge based domain

specific signal processing to obtain accurate segmentation without the requirement of any

manually segmented data.

1.2 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 provides the background study of

HMM based speech synthesis. It also discusses the current segmentation algorithms and

their drawbacks. Chapter 3 discusses the importance of syllables in phone segmentation. It

also presents an STE based algorithm to segment speech into syllable like units. In Chapter

3, a semi-automatic approach to phone segmentation is proposed. The approach proves the

claim that acoustic cues can improve segmentation accuracy.

Chapter 4 explains the drawbacks of the proposed semi-automatic approach. It then

proposes an automatic hybrid segmentation algorithm which uses STE for syllable boundary

correction along with HMMs to obtain phone level segmentation. In Chapter 5, a technique

is proposed, which uses spectral change as a cue to detect certain acoustic landmarks. It also

presents a modification to the previously proposed hybrid segmentation algorithm. Chapter

6 presents the conclusions and the scope for future work.

1.3 Contribution of the thesis

The following are the main contributions of the thesis:

1. A semi-automatic approach to phone segmentation is proposed. It uses manually

corrected syllable boundaries from an existing approach [11] and then automatically

3



derives phone boundaries.

2. An automatic hybrid segmentation algorithm is proposed. The algorithm uses HMMs

to obtain initial boundary estimates and then uses signal processing techniques to

correct some of the syllable boundaries based on certain rules. These corrected

boundaries are fed back to HMM based segmentation to improve the location of

other boundaries.

3. A variant of spectral flux named sub-band spectral flux (SBSF) is proposed as a

boundary detector for sibilant fricatives and affricates. A technique based on root

cepstral smoothing is proposed for smoothing SBSF. The peaks of the smoothed ver-

sion of SBSF are shown to give boundaries of sibilant fricatives and affricates.
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CHAPTER 2

Background and Related Work

Segmentation is an important component for both ASR and TTS. In ASR, large amounts of

data is collected from various speakers and statistical models are used to segment the data.

Unlike ASR, segmentation has to be very accurate for TTS. This is primarily because of

the co-articulation that exists in speech and an unit used wrongly can result in significant

deterioration in voice quality. The focus of this thesis is primarily in the context of speech

synthesis. Experiments involving the proposed segmentation algorithm are primarily carried

out in one paradigm of TTS, the HMM based speech synthesis framework. This chapter

gives an overview of HMM based speech synthesis. Speech data of two Indian languages -

Tamil and Hindi are used for experiments in this thesis and details specific to Indian language

synthesis are given in this chapter. This chapter also discusses the existing segmentation

algorithms for TTS and ASR.

2.1 Speech synthesis: an overview of different paradigms

Speech synthesis has evolved from formant based synthesis [12], through diphone based

synthesis [13], to unit selection synthesis (USS) [3]. In formant based synthesis, the fre-

quency location of formants, their corresponding amplitude and bandwidth are used as pa-

rameters and the resonators are connected either in cascade or parallel to approximate the

vocal tract transfer function. For voiced sounds, the source is approximated by a train of

5



impulses and a turbulent noise source is used for unvoiced sounds. The synthesis output of

this method lacks naturalness because the vocal tract function is highly approximated.

In diphone based synthesis, one example of each diphone (two adjacent half-phones) is

contained in the database. During synthesis, the appropriate diphones are chosen and con-

catenated. The target prosody is also superimposed using techniques like pitch-synchronous

overlap-add [13]. Although this method is more natural that formant based synthesis, the

speech produced using a small set of controlled units is not human-like.

USS requires collection of a large database of utterances from a voice talent. Then,

the database is segmented. During synthesis time, the target utterance is constructed by

concatenating the optimal segments from the database. The units in the synthesis database

is considered as a state transition network and the optimal segments are chosen with the help

of two cost functions: target cost and concatenation cost [3]. The target cost is a penalty

which depends on the difference between the context of the unit in the database and the

target unit. The concatenation cost is a penalty dependent on the quality of concatenation

of two consecutive units. After estimating the costs, a pruned Viterbi search is performed to

choose and concatenate units.

Although USS produces high quality speech output, it has a few drawbacks. Most im-

portantly, the footprint of USS is large. Also, it is not convenient in USS to control and

change speech parameters for applications like emotional synthesis, multilingual systems

and voice transformation.

HMM based speech synthesis systems (HTS) [14] are state-of-the-art in the area of

speech synthesis and do not suffer from many of the drawbacks that other systems do. HTS

extracts speech parameters from the waveforms and builds statistical models and uses them

for synthesis. They are attractive owing to the fact that they are not only small in size, but

they also provide much better control and scalability compared to the unit selection based
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systems. The footprint of HTS systems are small because it doesn’t store any pre-recorded

speech waveforms directly. The working of the HTS framework is explained in detail in the

subsequent section.

2.2 HMM based speech synthesis

The sub-word units are represented using HMMs in this framework, as they are generative

models. Unlike ASR, where HMMs are used for classification, here HMMs are used to

reconstruct speech by generating parameters. Traditionally, context dependent phones are

used as the basic units of synthesis in HTS. Alternatively syllable can also be used as the

basic units of synthesis [15], which is explained in Section 2.2.3.

2.2.1 The phone based HTS system

HTS requires labeled data as input. So, prior to the training phase, text should be converted

into the corresponding phone sequence using LTS rules and then the waveforms should be

segmented at the phone level.

In the training phase of HTS, spectral parameters (Mel generalized cepstral coefficients

[16]), excitation parameters (log of the fundamental frequency) and their respective dynamic

features (velocity, acceleration) are extracted from the speech data. These features are mod-

eled using multi-stream [6] HMMs. Initially, context independent (monophone) HMM mod-

els are built using the generated labels as well as the features extracted. The duration of each

state in a HMM is also modeled separately [14].

HTS uses three types of context: prosodic, linguistic and phonetic [17]. The phonetic

context used in HTS by default is a pentaphone context, that is for every phone, two preced-

ing and two succeeding phones are used as context. These contexts are added because the

7



acoustic realization of a phone depends on the context in which it appears. With these con-

texts, context dependent HMM models are built after being initialized with corresponding

context independent HMM models. Tree based context clustering [18] based on a question

set is performed to tie states. Tree based context clustering is performed to address two

problems associated with the modeling and use of context dependent phones: (1) insuffi-

cient data to build all context dependent HMMs separately and (2) to handle unseen models

during synthesis. An overview of the HTS system is illustrated in Figure 2.11.

Database
Speech

Extraction
Parameter
Excitation

Extraction
Parameter

System 

Training HMMs

HMM Training

Speech Synthesis

Labels

excitation parameters spectral parameters

Text

Analysis

Label

Context dependent HMMs

and Duration Models

HMM Parameter generation 

for synthesis

Excitation

parameters parameters

Spectral 
Synthesised speech

Fig. 2.1: Overview of HMM based speech synthesis

During synthesis, the required context-dependent HMMs are concatenated to obtain

the sentence HMM. Appropriate models are chosen by traversing the decision tree [19]

built during tree based context clustering. A parameter generation algorithm explained in

[20] is applied to get the speech observation vector that maximizes the output probability.

The speech waveform is synthesized from the generated spectral and excitation parameters

using a source-filter model. If cepstral coefficients are used as features, the mel log spectral

1This figure has been redrawn from [17]

8



approximation (MLSA) [21] filter is used.

2.2.2 An implementation for Indian languages

To build a HTS system for a new language, three language specific components are required

- a phone set, a question set and a set of LTS rules.

The common phone set and question set for Indian languages proposed in [22] is used

in this thesis. Figure 2.2 shows the complete phone set for Tamil and Hindi. Acoustically

similar phones in Hindi and Tamil are given a common label. The label for a vowel modifier

is the same as that for a vowel. Labels 1-17 in Figure 2.2 are vowels and the rest are

consonants.

The decision tree built during tree based context clustering is similar to a binary tree with

a yes/no question at each node. A question set consisting of relevant linguistic and phonetic

classifications is given as input to the clustering algorithm. The algorithm [18] chooses a

question at each node of the tree such that there is maximum gain in the likelihood. The

common question set [22] is a super set of questions across 13 Indian languages including

Tamil and Hindi. Two example questions from the question set are given below:

• QS “L-Long Vowel” {∗∧ aa−∗,∗∧ aamq−∗,∗∧ ii−∗,∗∧ uu−∗,∗∧ ee−∗,∗∧

oo−∗} (Set of context dependent phones with left phonetic context as a long vowel)

• QS “R-Back Stop” {∗+ k = ∗,∗+ kh = ∗,∗+g = ∗,∗+gh = ∗,∗+ kq = ∗} (Set of

context dependent phones with right phonetic context as a back stop consonant)

LTS rules provide a mapping between the orthographic representation (written form)

and the acoustic representation (spoken form). For Indian languages, this mapping can be

established by a finite set of rules and hence it need not be learnt from data. The input text

is split into words. The LTS module takes a single word as argument. First, the word is

9



syllabified and then the syllables are converted to a phone sequence.

Fig. 2.2: Common label set for Hindi and Tamil
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LTS rules for Tamil are fairly straightforward, as there is a one-to-one correspondence

between the grapheme and phoneme representation. The only major issue in Tamil is that

characters � (ka, ga), ( (txa, dxa), 8 (ta, da) and H (pa, ba) can be associated with two

different manners of articulation. The difference between the two, is the presence or absence

of voicing in the stop consonant. For instance, the Tamil character � can be pronounced as

both /ka/ (Unvoiced) and /ga/ (Voiced). Generally, they are unvoiced when they appear at

the beginning of a word or as geminates. They are voiced when they appear in between the

vowels or after the nasals �, ñ ,0ñ , �ñ , �ñ , Pñ (ng, nj, nx, n, nd, m) or after the consonants

Xñ , ñ̀ , hñ , �ñ , xñ (y, r, l, lx, w, zh) [15]. For example, in the word ��ñ �a /akka/, the character

occurs as a geminate and thus is unvoiced. In word��ñ �Pñ /angam/, the character � occurs

after the nasal �ñ and thus is voiced. There are exceptions to this rule in Tamil, primarily

because of the presence of words that have been borrowed from other languages, especially

Sanskrit. During syllabification, we add a separate tag for voiced stop consonants as per the

rule. However, we ignore this tag in the phone transcription and use the same symbol as an

unvoiced stop consonant from the label set. This is because context dependent models are

built in conventional HTS and the context resolves the ambiguity. The reason for adding the

tag during syllabification is explained in Section 2.2.3.

In Hindi, the major complication during syllabification is the problem of schwa deletion

(vowel deletion). For some syllables ending with a unit of the CV type, the V part is replaced

with a unit called halant. For example, the word Ecntn /cinatana/ without schwa deletion

would be syllabified as Ecn /cina/ and tn /tana/, but with schwa deletion it is syllabified as

Ecn̂ /cin/ and tn̂ /tan/. Converting syllables to phones is a straightforward mapping based

on the phone set. For instance, syllable Ecn̂ is phonified as “c i n”
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2.2.3 Syllable based HTS

The phonetic context used in conventional phone based HTS is a pentaphone. A pentaphone

is a large context. The consequence of this is that context dependent phone models will have

to be built with very few examples. Nevertheless, a large context is required to accommo-

date the effects of articulation. So, state tying is done. Inter-syllable co-articulation, though

present across syllables, is relatively less because syllables are the fundamental units of pro-

duction. Syllable based HTS proposed in [15] uses only one positional context as opposed

to close to 50 contexts in conventional phone based HTS [14].

A 5 state HMM is generally used for modeling phones. A syllable is defined as “C*VC*”,

where ‘C’ is a consonant and ‘V’ is a vowel. Hence, a syllable varies from a single phone

(e.g. a vowel) to a sequence of phones. Thus a variable number of states are required to

build syllable models. Given the transcription of a syllable into its constituent phones, the

number of states for each syllable can be obtained as “number o f phones ×5”. The prosody

of a syllable differs significantly based on the syllable’s position in a word. Based on exper-

iments with syllable-based USS for Indian languages, positional context seems to improve

USS performance [23]. Syllables are classified into three categories: begin, middle, and end

based on their positions in a word and modeled separately.

Since it is not practical to model the complete set of syllables in a language, during

synthesis we encounter a syllable that is not in the training database. An unseen syllable is

mapped to a sequence of {(C*V)
⋃

C} units. A fallback unit is a variable length unit like

a syllable. Fallback unit models are built with the same positional context as syllables. An

identical training process to that of syllables is adopted for fallback units. Figure 2.3 and

Figure 2.4, illustrate the training process and testing process, respectively.
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Although, there is co-articulation between fallback units, it doesn’t affect the overall

synthesis quality significantly. This is because an unseen syllable seldom occurs during

testing. Although, theoretically many syllables can be formed in a language, the phono-

tactics of the language makes most of the combinations invalid. The number of frequently

occurring syllables in a language is not more than 300, and the distribution of the frequency

of occurrence of these syllables follows a Zipf distribution [24] as can be seen from Figure

2.5.
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2.3 Importance of segmentation in speech synthesis

TTS systems rely on segmented speech corpora for training or construction purposes [7].

They require segmentation knowledge for constructing intonation, duration, and synthesis

components [25]. As the consumer of speech synthesis systems are human ears, accurate

and consistent segmentation needs to performed, to prevent sonic glitches in the synthesized

output.

Like other paradigms of TTS, building a good quality HTS system for any language,

also requires a well labeled database [1]. As explained in Section 2.2, context independent

models are built in conventional HTS using the segmentation knowledge. For instance, if

there is an average segmentation error of 10 ms in the detection of closure-burst boundaries

(stop consonants), in some examples, the burst region might be missed altogether because

these bursts are often less than 10 ms [7]. The purity of trained HMMs can be affected by
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poor segmentation leading to sonic glitches in the synthesised output.

In syllable based HTS, segmentation is even more crucial because phonetic context is

not added to the models. The location of boundaries have to be very accurate as syllable

models are built with the segmentation information and used directly during synthesis.

2.4 Related work on segmentation

Conventionally HMMs have been used to aid the segmentation process [6]. This section will

explain the process of using HMMs for segmentation. The segmentation output of HMMs

require subsequent manual or automatic boundary corrections. Some existing boundary

correction methods are discussed in this section.

2.4.1 Segmentation using HMMs

Speech can be considered to be a quasi-stationary over short periods of time. Features like

Mel frequency cepstral coefficients (MFCCs) are extracted from the waveform. Features at

the rate of X frames per second are extracted from the speech data. Frame length of Y ms

(Y > 1/X ) is used. This results in overlapped frames to accommodate for co-articulation.

It is reasonable to assume speech signal as a realization of some message encoded as a

sequence of one or more symbols [6]. HMMs are perhaps the best models that can represent

sequential time-varying patterns.

HMMs have three parameters: λ = (A,B,π), where, A is a matrix consisting of tran-

sition probabilities, B are the emission probabilities and π is the initial state distribution

[26]. Baum-Welch re-estimation [5] is used to optimally estimate these parameters from the

observation sequence (i.e. feature vectors extracted from the speech signal). In this thesis,

the HTK toolkit is used [27] for implementing HMMs. In HTK package, π is incorporated
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within A by using two extra non-emitting dummy states. These dummy states facilitate the

construction of composite models.

Each phone in the language is modeled as an HMM. For high resource languages like

English, HMM based ASR systems like [28] are used to perform segmentation by restricting

its language model to the known input sequence. For low resource languages like Indian

languages, there is no existing ASR system. So, HMM models have to be trained first.

There are broadly two ways to train them: bootstrap approach (semi-automatic) and flat start

approach (automatic). After training HMMs, forced alignment [6] using the transcription

information can be performed to obtain segmentation.

Bootstrap labeling is performed in four steps: (1) A small subset of utterances are seg-

mented manually at the phone level, (2) phone HMM models are built using the data that is

manually labeled, (3) forced Viterbi alignment is performed on the rest of the data using the

models built and (4) the models are refined iteratively until the segmentation is satisfactory.

The problem with this approach is labeling the bootstrap data manually at the phone level.

This segmentation should be carefully performed by experts who are familiar with acoustic

phonetics. The flat start approach is explained in Section 2.4.2.

2.4.2 Baseline HMM based automatic segmentation

In the flat start approach, all monophone HMM models are initialized such that their state

means and variances are equal to the global mean and variance. If some manually segmented

data is available, isolated training of monophone HMMs can be performed. To train phone

HMMs without any segmentation knowledge, embedded training is performed. During em-

bedded training [27], transcription knowledge is used to construct a composite HMM for

each utterance by concatenating phone HMMs. Embedded Baum-Welch re-estimation is

performed on these utterance HMMs and all monophone HMM models are updated simul-
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taneously. The baseline HMM based automatic segmentation can be summarized in three

steps: (1) flat start initialization of phone HMMs, (2) embedded training and (3) forced

Viterbi alignment.

2.4.3 Drawbacks of HMM based segmentation

A fundamental drawback of using HMMs for segmentation is that boundaries are not rep-

resented by them [29] as they do not use proximity to boundary positions as a criterion

for optimality during training [2]. The boundaries are simply derived from the alignment of

phone states with frames [29]. Acoustic landmarks at boundaries like abrupt spectral change

[30] are not used to determine the location of a boundary. Results achieved using HMMs

are good and quite robust, but they are not sufficient enough to build high quality synthesis

systems [2]. So a combination of HMMs and boundary correction techniques are introduced

to obtain accurate segmentation.

2.4.4 Supervised machine learning based correction methods

The common requirement of methods discussed here is the availability of around one hour

of manually segmented data. Boundary models for various phone transitions are built using

this data. HMMs are used to obtain initial segmentation and a boundary is searched in the

vicinity using the trained models. In [8], a multi layer perceptron (MLP) was employed to

refine the phone boundaries. To increase the accuracy of phoneme segmentation, several

specialized MLPs were individually trained based on phonetic transition. The entire phone

transition space was partitioned and a specialized MLP was allocated to each partition. In

[9], support vector machines (SVMs) were used for modeling boundaries. In [2], the bound-

ary between every pair of phones was modeled as a multi-state HMM. A special one-state

HMM is used for detecting phoneme boundaries in [29].
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The drawback of these approaches is the requirement of manually segmented data with

the help of acoustic phonetic experts. There is hardly any manually labeled data available

for Indian languages that has been carefully marked. The experiments for these approaches

were performed only on English for which carefully labeled data is available. Nevertheless,

these approaches are sensitive to manual labeling errors. There is a growing demand for

building TTS systems for many low resource languages. Hence, it is essential to develop

boundary correction techniques which are knowledge based.

2.4.5 Knowledge based correction methods

An iterative boundary correction technique is proposed in [1]. Synthesis quality measure

is used as an inherent part of boundary optimization. The maximum likelihood parameter

generation (MLPG) algorithm in the HTS framework is applied to generate parameters.

The distance between predicted and actual frame is used as a metric to refine the boundary

location. The boundary is shifted only by a single frame per iteration. The metric used in

this approach does not represent a boundary. Moreover, the authors of [1] do not recommend

it for refining flat start segmentation. The authors have assumed the starting point to be close

to optimal. The approach is also computationally very expensive.

In [31], spectral boundary correction is performed using weighted slope metric [32].

The authors have used the weighted slope metric as a boundary detector to correct bound-

aries corresponding to all phone transitions. The boundaries were corrected by moving it

to the nearby peak given by the metric. This approach has quite a few drawbacks. Not all

phone transitions are accompanied by an abrupt spectral change (eg. semivowel to vowel).

Hence, it might not be appropriate to use this metric to correct all phone boundaries. The

authors have acknowledged that the detector used is likely to produce many spurious peaks

and the decision on the location of phone boundary is somewhat risky without any human
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intervention.

2.5 Motivation for the proposed method

Fig. 2.6: Output of HMM based segmentation

There are no freely available speech recognition systems for Indian languages. Segmen-

tation using a small amount of data using flat-start embedded training and forced Viterbi

alignment is poor. Figure 2.6 shows only a portion of a Hindi utterance segmented au-

tomatically using the baseline HMM based automatic segmentation. Panel A shows the

waveform. Panels B and C show the syllable and phone aligned transcription obtained using

forced alignment respectively. Panel D shows the spectrogram. The dotted lines in Figure

2.6 are phone boundaries and the solid lines are syllable boundaries, obtained after forced

alignment. The location of syllable boundaries 1 and 2 are significantly incorrect (the actual

locations are shown using dashed lines). The actual location of boundary 1 is right after an

affricate. As the energy of affricates is concentrated in the higher bands of the spectrum, the

boundary is clearly visible in the spectrogram. The actual location of boundary 2 is right

before an unvoiced stop consonant and this location can be extracted from the time domain

signal as there is a significant dip in energy because of closure. In this thesis, an attempt

has been made to use signal processing techniques to extract boundary information from
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such acoustic cues and they are used in tandem with HMMs to improve the segmentation

accuracy.

2.6 Summary

In this chapter, an overview of HTS was presented. Two variants of HTS - the conventional

phone based HTS and syllable based HTS were discussed. Indian language specific compo-

nents in HTS were discussed in detail. Then, the importance of segmentation in HTS was

emphasized. The process of using HMMs for segmentation and the necessity of correcting

the boundaries was detailed. This was followed by a discussion on the existing boundary

correction techniques and their drawbacks.
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CHAPTER 3

A Semi-Automatic Approach to Segmentation of

Speech

3.1 Introduction

The syllable is the fundamental unit of speech production and cognition [33, 34]. It is,

therefore, easier to determine syllable boundaries compared to phone boundaries. Phone

transitions are not necessarily distinguishable owing to co-articulation in continuous speech.

On the other hand, syllable boundaries are more or less distinct. The acoustic energy in the

region between syllables is significantly lower than at the middle of a syllable.

Although the role of syllables in segmentation cannot be contested [35], appropriate

acoustic cues are required to detect syllable boundaries. Syllable boundaries are character-

ized by low energy. The generic structure of a syllable consists of three parts: the onset,

nucleus, and coda. The onset and coda can consist of consonants (onset and coda are op-

tional in a syllable), while the nucleus is a vowel. The vowel region corresponds to a much

higher energy region compared to a consonant region. The definition of a syllable in terms

of the short-time energy (STE) function is suitable for almost all the languages, in the case

of spontaneous speech. The STE can be used as a cue to determine syllable boundaries,

but it cannot be applied directly owing to local fluctuations [36]. But it is shown in [11]

that the STE function, when smoothed by performing group delay processing, can be used
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to detect syllable boundaries. This chapter explains in detail the STE based group delay

segmentation algorithm [11] and how it can be used to aid syllable level segmentation using

a semi-automatic labeling tool [37].

With manual correction, group delay segmentation algorithm can be used to produce

accurate syllable boundaries. In this chapter, an attempt is made to use the existing in-

formation of syllable boundaries, to obtain accurate phone boundaries. Although syllable

boundaries are obtained with manual intervention, phone boundaries within syllables are

obtained automatically using HMMs.

3.2 Group delay based segmentation of speech into syllable

like units

Group delay based processing of STE can yield syllable boundaries as shown in [11, 38].

The basic idea of the algorithm is to make STE resemble the magnitude spectrum of an

arbitrary real signal and to smooth it using group delay processing [39]. The algorithm for

group delay segmentation [36] is given below:

1. The STE function E[m] where m = 0,1, ....,M−1 is calculated from the given speech

utterance x[i] as

E[m] =
(m. fs)+L−1

∑
i=m. fs

(x[i])2 (3.1)

where fs is the frame shift and L is the window length. Let the minimum value of the

STE function be Emin.

2. Compute the order N of fast Fourier transform (FFT) as given below

N = 2⌈log(2M)/log(2)⌉ (3.2)
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3. Compute E i[m] as 1
E[m]γ

after appending (N/2−M) number of Emin to the sequence

E[m], where γ = 0.011

4. Construct the symmetric part of the sequence E i[m] by lateral inversion. The resulting

sequence is positive and symmetric. So it resembles the magnitude spectrum of an

arbitrary real signal. Let’s call this sequence E[K].

5. The IDFT of E[K] is computed. The resultant signal is the root cepstrum [40] and

the causal portion of the same is a minimum phase signal [41]. Let’s call this causal

sequence ec[n].

6. A single sided Hanning window is applied on ec[n] and its minimum-phase group

delay function Egd [K] is computed. The size of the window applied is

Nc =
Length o f STE

Window scale f actor (WSF)
(3.3)

The resolution of the group delay function is controlled by WSF. The smaller the

WSF, the greater is the resolution and vice versa.

7. Peaks in the minimum phase group delay function (Egd[K]) are detected. These

locations correspond to low energy regions.

The various steps in the segmentation algorithm along with a sample output in each stage

is illustrated by Figure 3.1. The algorithm does not take text transcription as an input, unlike

HMM based forced alignment. This makes the procedure agnostic to text transcription.

The extent of smoothing of the STE function, or in other words, the number of syllable

boundaries, is determined by the size of the single sided Hanning window applied in the

1A small value of γ is chosen to reduce the dynamic range of STE
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Fig. 3.1: Steps involved in group delay segmentation algorithm for obtaining syllable

boundaries

sixth step of the algorithm. Note that the size of the window is not controlled directly in the

algorithm. Instead, it is controlled using the parameter WSF, which is inversely proportional

to the window size.

To reduce the computation time, an entire speech utterance is not given directly as an

input to the group delay segmentation algorithm, instead, the utterance is divided into phrase

like chunks by performing speech activity detection and then these chunks are given as the

input.

3.3 Labeling tool

In the context of TTS, group delay segmentation algorithm cannot be used in isolation, as it

does not consider transcription to be an input. The algorithm gives rise to two types of errors

- insertion and deletion errors. When an additional syllable boundary is given in between
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a syllable, it is an insertion error. When a syllable boundary is missed completely it is a

deletion error. When the syllable sequence is directly mapped to the boundary sequence,

even a single error can mess up the whole segmentation. If the boundary of a syllable is

incorrect, the boundary of every syllable that follows it will also become incorrect. Also,

the location of the boundary is not accurate in every place.

So, a labeling tool is developed in [37] to manually correct boundaries. Figure 3.2 shows

the labeling tool. WSF is chosen depending on the syllable rate of the speaker. The output

of the group delay segmentation algorithm is shown by the tool. The tool can be used to

insert, delete and move boundaries for correct the segmentation.

Fig. 3.2: Screenshot of semi-automatic labeling tool

3.4 Obtaining phone level segmentation

Syllable level boundaries were obtained using the labeling tool discussed in the previous

section. The objective is to exploit this available information of syllable boundaries while
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using HMMs for phone level segmentation. These syllable boundaries should act as anchor

points, for the HMMs to find the phone boundaries.

As the syllable boundaries have been obtained already, each utterance in the speech data

is split at the syllable level and stored separately. For example, if the utterance “text 001”

has ‘n’ segments (syllables), the waveform is divided into ‘n’ files and stored separately

as “text 001-1” to “text 001-n”. Spectral parameters (Mel frequency cepstral coefficients)

are extracted from these syllable waveforms. Baum-Welch embedded re-estimation [6] is

performed on each of these syllables iteratively to build phone HMM models. Using these

models, phone level alignment is performed on the syllable waveforms. By combining the

individual phone level alignment of the syllables constituting an utterance, phone segmen-

tation corresponding to the complete utterance is obtained.

Figure 3.3 summarises the above procedure with an example. When phone alignment is

performed within syllable waveforms, the timestamps of the boundaries obtained are relative

to the end time of the previous syllable in the utterance. To obtain the phone label file for the

entire utterance, the end time of the previous syllable is added to all phone boundaries in the

current syllable as shown in Table 3.1. For example, when phone alignment is performed on

the syllable /baar/ (bAr̂), the end time of the previous syllable (0.728 second) in the utterance

/ii/ (и), is added to the boundaries of the phones /b/, /aa/, and /r/. After the phone alignment

is performed within the syllable /baar/ (bAr̂), the end time of /b/ is 0.079 second. When

the phone label file is formed, the end time of /ii/ (и) is added and the end time of /b/ (b̂)

becomes 0.807 second.

Table 3.1 shows a sequence of known syllable-boundaries for the phrase “is� ки bAr”

(/isee kaii baar/) in an utterance and the boundaries of the phones that make up the syllable,

which are obtained using the procedure explained in this section. The start time and the end

time of a syllable (given in bold) shown in Table 3.1, remain unaltered in the phone label, as
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forced alignment is performed intra-syllable.

Table 3.1: Phone labels from syllable labels

Syllable Label Phone Label

Beg End Unit Beg End Unit

0.000 0.234 SIL 0.000 0.234 SIL

0.234 0.363 i /i/ 0.234 0.363 i

0.363 0.398 s
0.363 0.516 s� /see/

0.398 0.516 ee

0.516 0.576 k
0.516 0.647 к /ka/

0.576 0.647 a

0.647 0.728 и /ii/ 0.647 0.728 ii

0.728 0.807 b

0.807 0.982 aa0.728 1.113 bAr̂ /baar/

0.982 1.113 r

1.113 1.228 SIL 1.113 1.228 SIL

The segmentation of an example phrase “us rAmAn\d кF хoj кrtA h{” (/us raamaanaqd

kii khoj kartaa hei/) is shown in Figure 3.4. Panel A shows the waveform. Panel B shows

the segmentation at phone level given by the baseline HMM segmentation (i.e. flat start

initialization, sentence level embedded re-estimation and sentence level forced alignment)

explained in Chapter 2. Panel C is the segmentation given by the proposed semi-automatic

method. Panel D shows the group delay function. The syllable boundaries obtained using

the proposed method are highlighted using vertical lines. Except for the unvoiced fricative

/s/ in the boundary of the syllable /us/, no other syllable boundary was moved during manual

correction of labels using DONLabel. Three boundaries (peaks in the group delay function

without vertical lines over it) were given within a syllable, that was also deleted during

manual correction.
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Fig. 3.3: Syllable enforced embedded re-estimation and alignment

The phone boundaries obtained using flat start segmentation in Figure 3.4, were ob-

served to be inaccurate. For example, the syllable /kii/ is segmented only as /ii/ by flat start

segmentation. Observing the waveform, it can be seen that the segment marked as /ii/ by

flat start segmentation, also includes the stop consonant. The boundary of the phone /j/ in

syllable /khoj/ being incorrect is also clearly visible in the waveform.
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Fig. 3.4: Comparison of flat Start HMM and syllable enforced segmentation boundaries

3.5 Experiments and results

3.5.1 Experimental setup

1.35 hours of Hindi data (595 utterances) was used for training. All utterances have been

recorded in a studio environment at 48000 Hz, 16 bits per sample, spoken by a single native

Hindi male speaker. Segmentation is performed on this database with both the proposed

semi-automatic approach and the baseline HMM based automatic flat start approach dis-

cussed in Chapter 2. Packages HTK-3.4.1 [6] and HTS-2.2 [14] were used. All 595 utter-
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ances were labeled at the syllable level using DONLabel [37]. HMM models with five states

and two mixture components per state were used to model each phone for both the proposed

semi-automatic segmentation and baseline HMM segmentation.

3.5.2 Performance evaluation

Degradation Mean Opinion Score (DMOS) [22] was calculated for comparing naturalness

and for intelligibility, semantically unpredictable sentences2 were synthesized. Participants

at the test were asked to listen to each sentence only once and transcribe the sentence. From

the transcribed sentences, Word Error Rate (WER) was calculated.

Table 3.2: Comparison using DMOS and WER

System DMOS (Naturalness) WER

Semi-Automatic 2.98 3.19%

Flat Start HMM 2.89 5.04%

Pair comparison (PC) test [42] was also performed. Same sentences were synthesized

with both the systems and the participants were asked to choose which system was bet-

ter for each sentence during PC test. We denote the HTS system built with the proposed

semi-automatic segmentation as “A” and the HTS system built with flat start HMM based

segmentation as “B”. During PC test, the order in which the sentences were played creates

a bias. So, both “A-B” test and “B-A” test were performed with different sets of sentences.

In “A-B” test, synthesized sentences of system “A” were played first and during “B-A” test,

2e.g. “aAкAш m� s'� d hATF nActA gAtA jA rhA h{”
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synthesized sentences of system “B” were played first. Scores in column 1 and 2 of Table 3

are the percentages with which the first term of the pair is preferred. “A-B+B-A” in Table 3

denotes the order independent preference in percentage of system “A”. It is calculated as

“A-B+B-A” =
(“A-B”+(100− “B-A”))

2
(3.4)

Table 3.3: Pair comparison tests, where “A” is the HTS system built with the proposed

semi-automatic segmentation and “B” is the HTS system built with flat start HMM based

segmentation

A-B B-A A-B+B-A

66.67 13.33 76.67

The results of pair comparison tests and other subjective evaluations clearly show that

there is an improvement in synthesis quality when the proposed segmentation algorithm is

used for building HTS systems.

The proposed semi-automatic segmentation was used in IIT Madras’s submission [24]

to Blizzard challenge 2014 for segmenting Hindi and Tamil data at the phone level. Con-

ventional phone based HTS systems were built using the segmented data.

3.6 Summary

In this chapter, the importance of syllable boundaries in phone segmentation was discussed

first. The group delay segmentation algorithm to detect regions of low energy using STE

as a cue was explained in detail. It was shown how this algorithm can aid syllable level

segmentation with minimal manual intervention. It was proposed that syllable boundary
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information can be used for obtaining accurate phone boundaries by restricting parameter

estimation of phone HMMs and subsequent alignment, at the syllable level. Comparison

to baseline HMM based flat start automatic segmentation was performed by using the two

approaches for segmenting the training data of a Hindi HTS system. A preference of 76.67%

was attained.

32



CHAPTER 4

A Hybrid Approach to Segmentation of Speech

4.1 Introduction

The semi-automatic phone segmentation methodology proposed in Chapter 3 serves as a

proof of concept that acoustic cues like STE can help in attaining better boundaries. How-

ever, the method has a few drawbacks. Importantly, the process is not completely automatic.

Manual correction of syllable boundaries is a tedious task as it has to be performed on the

entire database.

The approach is also very sensitive to manual errors. Inconsistent correction across hu-

mans is also a serious issue. Manual corrections are not consistent when insertion or move-

ment of boundaries are involved. When a syllable is corrected erroneously, even subsequent

use of HMMs won’t make its location better.

Signal processing based syllable boundary detection and HMM based approach for

phone segmentation seem to complement each other well. Nevertheless, the two are not

tightly coupled, where the results of one are used to direct the performance of the other and

vice-versa. HMMs are good at modeling the acoustic characteristics of a phone. HMM

based forced alignment exploits the available transcription and thus does not miss actual

boundaries by a large margin. On the flip side, HMMs are not good at modeling boundaries.

On the other hand, group delay segmentation algorithm is good in detecting syllable bound-

ary landmarks, but is agnostic to transcription and, therefore results in insertion and deletion
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errors. In this chapter, an algorithm that combines these two contrasting approaches in a

more efficient manner is proposed, to address the issues mentioned above.

4.2 Motivation
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Fig. 4.1: Syllable boundaries given by HMM based segmentation (solid lines) and group

delay based segmentation with WSF=10 (dashed lines) & WSF=30 (dotted lines)

Figure 4.1 shows the syllable level segmentation of the phrase “P
�ñ 8``aÀ��(X

8�H:” (makintararaajaˆnuTaiya taLapati1). The solid lines in Figure 4.1 show the syllable

boundaries given by flat start initialized embedded training of monophone HMMs followed

by forced Viterbi alignment (baseline HMM segmentation). Panel A shows the waveform.

Panel B is the syllable aligned transcription obtained using HMMs. Panels C and D show

two different group delay functions. The difference between the two functions is the change

in the value of WSF. Observe that the boundaries given by the two are not identical. Nev-

1Tamil text written in ITRANS [43]
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ertheless, although the lower value of WSF results in insertions and the higher value of

WSF results in deletions, both match at some syllable boundaries. What is meant here

is that, insertions lead to additional boundaries but the actual syllable boundaries are not

misplaced. Similarly, deletions lead to some syllable boundaries get deleted, while other

syllable boundaries are intact. This property of group delay based segmentation can be ex-

ploited. The function in the middle pane is obtained with ‘WSF = 10’ and the dashed lines

are the corresponding boundaries. The other function is obtained with ‘WSF = 30’ and the

dotted lines are the corresponding boundaries.

Although with WSF as ‘10’, the number of spurious boundaries is large (resolution is

high), nevertheless the correct boundaries are not misplaced. Such a group delay function

should be first obtained for every utterance. This group delay function gives many low

energy regions, which are possible candidates for being syllable boundaries. Boundaries

given by HMMs are in the vicinity of the actual boundary. Boundary correction can be per-

formed by moving the boundary to the closest low-energy region obtained from group delay

segmentation. However, the location of boundaries obtained using group delay segmenta-

tion algorithm are not accurate in every case. So, correction rules are required to decide

when boundary correction can be performed. Extensive experimentation with group delay

segmentation shows that except for syllables starting or ending with a fricative, nasal, or

starting with a semi-vowel, affricate, the boundaries are very accurate [36].

4.3 Hybrid approach

4.3.1 Correction rules

Extensive experimentation with group delay segmentation shows that except for syllables

starting or ending with a fricative (‘sx’, ‘s’, ‘sh’, ‘z’, ‘f’ ), nasal (‘n’, ‘nj’, ‘nx’, ‘nd’, ‘m,
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‘ng’, ‘mq’ ); or starting with a semi-vowel (‘y’, ‘r’, ‘l’, ‘w’, ‘zh’, ‘lx’, ‘rx’ ), affricate (‘c’,

‘ch’, ‘j’, ‘jh’ ), the boundaries are very accurate [36]. The correction rules depend only on

the two phones present on either side of the boundary. Say, a decision has to be made as to

whether a boundary between syllable1 and syllable2 should be corrected. Let syllable1 be

represented as “P∗ep” and syllable2 be represented as “bpP∗”, where P∗ is a sequence of zero

or more phones, bp is the first phone of syllable2 and ep is the last phone of syllable1. The

decision depends only on bp and ep. Syllable boundaries given by HMMs can be corrected

if,

• (ep NOT in the set {fricative, nasal, silence} ) AND (bp NOT in the set {fricative,

affricate, nasal, semivowel, silence} ).

4.3.2 The hybrid segmentation algorithm

Some segments given by HMM based segmentation suffer from gross durational errors,

where the duration of one segment is significantly larger or smaller than the others. Hidden

semi-Markov models (HSMM) [44] have explicit state duration probability distributions.

All states of monophone HSMMs were initialized with global mean and global variance,

followed by embedded reestimation. When alignment is performed using HSMMs, it was

observed that although durational errors reduced significantly, the boundaries obtained by

forced alignment using HSMMs were worse than those obtained with HMMs. HMM models

are built with the segmentation obtained using HSMMs and then HMM based forced align-

ment is performed. This corrects durational errors in most of the places and the location of

boundaries are also not very inaccurate.

If the syllable does not end with a nasal, fricative, silence or if it is not followed by a

nasal, fricative, affricate, silence or a semi-vowel, the boundary of that syllable is moved to

the nearby region of low energy given by the group delay function with high resolution as
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explained in Section 4.2.

During embedded training [27], the transcription is used to construct a composite HMM

for each utterance by concatenating phone HMMs. Embedded Baum-Welch re-estimation

is performed and all monophone HMM models are updated simultaneously.

As segmentation at the syllable level is available, waveforms are split at the syllable

level and embedded training is performed on these syllables similar to the semi-automatic

approach explained in Chapter 3. Now, the composite HMMs obtained will be syllable

HMMs and not utterance HMMs. Embedded Baum-Welch re-estimation is restricted to the

syllable boundaries and monophone models are built [45]. These models are more robust

as re-estimation is performed on shorter segments of speech. Using the new monophone

models, forced alignment is performed on the entire utterance. The boundaries obtained

using forced alignment are again compared with that of the group delay boundaries and

corrected as before to obtain the final syllable level segmentation. Although, locations of

low energies remain the same, this comparison is performed again because of the following

reason. When HMM based forced alignment was performed initially, the models were not

robust and hence the boundaries in some places can be misplaced by a large margin. During

correction phase, the boundaries could have moved to the wrong peak. When alignment is

performed again using more robust models, the boundaries given by HMMs will probably

come closer to the desired peak.

To obtain segmentation at the phone level, embedded Baum-Welch re-estimation is per-

formed at the syllable level again to refine the monophone models. With these models phone

level alignment is performed on the syllable waveforms [45]. By combining the phone level

alignment of the syllables constituting an utterance, phone segmentation corresponding to

the entire utterance is obtained as shown in Figure 4.3. In Figure 4.3, Panel A shows the

waveform and panel E shows the spectrogram. Panel D shows the group delay (GD) func-

37



tion. Syllable level alignment obtained using the proposed method is given by panel B and

the phone level segmentation obtained after forced alignment within the syllables is shown

by panel C. Figure 4.2 gives the flowchart for the proposed method.

HSMM-based forced alignment

Build HSMM monophone models using flat start training

Build HMM monophone models and perform forced alignment

Syllable boundary correction using group delay algorithm

Splice waveforms at the syllable level and perform embedded

training on the syllable waveforms to refine monophone models

HMM-based forced alignment

Syllable boundary correction using group delay algorithm

to obtain the final syllable level segmentation

Splice waveforms at the syllable level and perform embedded

training on syllable waveforms to refine monophone models

HMM-based forced alignment on syllable waveforms

to obtain phoneme boundaries within syllables

Combine phoneme level alignment within syllables 

constituting an utterance to obtain phoneme level 

segmentation for the entire utterance

Fig. 4.2: Steps involved in the proposed hybrid method
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Fig. 4.3: Phone level segmentation after alignment within syllables

4.4 Experiments and results

4.4.1 Experimental setup

730 utterances of Tamil data spoken by a single native female speaker is used. For training

HSMMs, mel cepstral coefficients and log of the fundamental frequency are used as features.

All monophones are modelled as 5-state, 1-mixture HSMMs. For training HMMs, MFCCs

are used and all monophones are modeled as 3-state, 2-mixture models. HTS-2.2 [14] and

HTK-3.4.1 [27] are used. WSF is set as ‘10’ in group delay segmentation algorithm.
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4.4.2 Segmentation accuracy

Fig. 4.4: Syllable level segmentation given by the proposed hybrid method compared to

HMM, HSMM and HSMM followed by HMM

Panel A of Figure 4.4 shows the waveform. Panels B, C, D and E are the syllable aligned

transcriptions given by the proposed method, HMMs, HSMMs and flat start training of

HSMMs followed by HMMs respectively. Panel F shows the group delay function and

panel G shows the spectrogram. The boundary of syllable “kint” is slightly misplaced when

flat start training of HSMMs followed by HMMs are used. When boundary correction is per-

formed in the proposed method, group delay peak in the proximity is taken and the location

of the boundary is rectified.

Note that in Figure 4.4, the syllable “ta” marked in the spectrogram was identified cor-

rectly only by the proposed method (solid line). Both the statistical and the group delay

approaches failed to find the boundary correctly. Group delay based approach did not detect
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the boundary as the succeeding syllable “ra” starts with a semi-vowel. But in the proposed

method, when the two approaches work in tandem, phone models are built in a robust man-

ner, which leads to the correct alignment of the syllable. The inference from this example is

that it is not necessary to correct every boundary using signal processing. Even correcting a

subset of boundaries can help improve the overall segmentation. This example also shows

that restricting parameter estimation of phone HMMs to a smaller segment gives more robust

models.

Figure 4.5 shows another example. Panel A of Figure 4.5 shows the waveform. Panels

B and C show the syllable aligned transcription given by the baseline HMM based seg-

mentation and the proposed hybrid segmentation algorithm respectively. Panel E shows the

spectrogram. The group delay function is shown by panel F along with the location of its

peaks. The syllable segment “H(ñ (‘p’ ‘a’ ‘tx’ )” given by baseline HMM segmentation is

clearly incorrect. A significant portion of the preceding syllable “�( (‘tx’ ‘ai’ )” and the

succeeding syllable “( (‘tx’ ‘a’ )” is incorrectly included within the boundaries of syllable

“H(ñ ”. The same syllable segment “H(ñ ” highlighted in Figure 4.5 is the output of hybrid

segmentation. Here, the boundaries of all three syllables “H(ñ ”, “�(” and “(” are rectified

because of STE based boundary correction.

4.4.3 Performance evaluation

With the segmentation given by the hybrid method and the conventional HMM based method,

HTS systems [14] were built. Both phone based HTS and syllable based HTS [15] were built

for Tamil. Subjective evaluations were performed on these TTS systems. First, semantically

unpredictable sentences (SUS) were synthesized and participants of the test were made to

transcribe them. Then, word error rate (WER) was calculated. The hybrid approach results

in a lower WER as indicated in Table 4.1 .
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Table 4.1: Comparison using WER

System WER

HTS - Syllable (HMM Segmentation) 11.11%

HTS - Syllable (Hybrid Segmentation) 7.07%

HTS - Phone (HMM Segmentation) 4.04%

HTS - Phone (Hybrid Segmentation) 1.01%

Pair comparison (PC) test [42] was also performed. For this comparison, the HTS sys-

tem built with the hybrid segmentation method is referred to as “A” and the HTS system

built with HMM based segmentation is referred to as “B”. The results of PC test are shown

in Table 4.2.

Table 4.2: Pair comparison tests

HTS - Syllable HTS - Phone

A-B B-A A-B+B-A A-B B-A A-B+B-A

75 20 77.5 70 15 77.5

The proposed automatic hybrid segmentation algorithm was used in IIT Madras’s sub-

mission [24] to Blizzard challenge 2014 for segmenting Gujarati, Telugu and Rajasthani

datasets. Both syllable based USS systems and phone based HTS systems were trained

using the segmented data.
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4.5 Summary

In this chapter, the drawbacks of the semi-automatic segmentation algorithm proposed in

Chapter 3 was discussed first. It was proposed that syllable boundary corrections can be

performed automatically by overestimating the number of low energy regions using group

delay segmentation algorithm. Correction rules were proposed to optimize boundaries ob-

tained using HMMs, by moving certain boundaries to low energy regions in the vicinity.

Then, a hybrid automatic segmentation algorithm was proposed. The proposed hybrid seg-

mentation algorithm was compared to the baseline HMM segmentation by using the two

approaches for segmenting the training data of a Tamil HTS system. Subjective evaluation

using pair comparison tests shows 77.5% preference for the HTS system built with hybrid

segmentation.
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CHAPTER 5

Importance of Sub-Band Spectral Flux in

Segmentation

5.1 Introduction

The main aim of this chapter is to propose spectral change also as a cue along with STE to

perform syllable boundary correction in the hybrid segmentation algorithm. The algorithm

proposed in Chapter 4 does not correct any syllable boundary consisting of fricatives, af-

fricates and nasals. Boundaries of sibilant fricatives (‘sx’, ‘s’, ‘sh’, ‘z’) and affricates (‘c’,

‘ch’, ‘j’, ‘jh’) have significant and clear spectral change. This chapter proposes a method to

detect these boundaries.

The boundary correction rules for hybrid segmentation is modified in this chapter to cor-

rect boundaries at fricatives, affricates and nasals. The acoustic realization of a phone seems

to be different depending on the position in the syllable. The positional context is therefore

added to phones before syllable level embedded re-estimation to model them separately.

5.2 Spectral change as a cue

Spectral change as a function of time that can give a cue to fricative/affricate boundaries

is required to enable correction. Weighted slope metric [26] is a measure of both spectral

band energy difference and spectral transitions. Weighted slope metric is directly used in
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[31] to correct all phone boundaries. As discussed in Chapter 2, the authors of [31] have

acknowledged that when the function is used directly, it gives a lot of spurious peaks.

Fig. 5.1: Comparison of sub-band spectral flux with spectral flux

Spectral flux is a simpler function than weighted slope metric that gives a measure of

spectral change. Spectral flux is the Euclidean distance between the normalized power spec-

trum of a frame and the normalized power spectrum of its previous frame. The power

spectrum is normalized by dividing all its coefficients by its maximum coefficient.

In Figure 5.1, panels A and B show the waveform and the spectrogram respectively.

Panel C shows the spectral flux. Spectral flux has many prominent peaks in certain sibilant

fricative and affricate regions. The smoothed version of spectral flux (the algorithm for

smoothing is explained in the next section) is shown by panel D along with its peaks. The
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location of boundaries obtained using spectral flux is not accurate in certain places (like the

boundary in Figure 5.1, shown using a dashed vertical line).

Phone boundaries can be characterized by energy changes in different bands of the spec-

trum [31]. This Section defines a new function named sub-band spectral flux (SBSF) . To

compute SBSF, the normalized power spectrum is uniformly divided into four bands (as-

suming sampling rate as 16 KHz) and the energies within these bands are calculated. The

squared difference between the band energies of a frame and the band energies of its previ-

ous frame gives SBSF. If 512 point FFT is used for calculating power spectrum, spectral flux

is a distance between two vectors of 512 dimensions. On the other hand, SBSF is a distance

between two 4 dimensional vectors. If E[i] is the energy in the ith band of the normalized

power spectrum, the SBSF of frame n is calculated as

SBSFn =
4

∑
i=1

(En[i]−En−1[i])
2 (5.1)

Panel E in Figure 5.1 shows SBSF. The smoothed version of SBSF is shown by panel

F. The erroneous boundary given by spectral flux is detected accurately when SBSF is used

(shown using a dotted vertical line).

A syllable can be defined in terms of STE as explained previously. The peaks in the

reciprocal of the STE function correspond to syllable boundaries. On the other hand, when

SBSF is used as a boundary detector, the peaks of SBSF correspond to phone boundaries

when the particular phone transition is accompanied by a significant change in spectral char-

acteristics. This property is not true for all phone transitions, eg. a transition from a vowel

to a semi-vowel.
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5.3 Boundary detection algorithm for sibilant fricatives and

affricates

SBSF is a positive function. When it is made symmetric, it looks like a magnitude spec-

trum (inspired from group delay segmentation algorithm [11] explained in Chapter 3). So,

techniques used to smooth magnitude spectrum can be applied for this signal too. In this

algorithm, root cepstral [40] smoothing is used. The algorithm is illustrated as a flowchart

in Figure 5.2. The algorithm is explained below.

1. Compute SBSF function S[m] where m = 1,2, ....,M−1 from the given speech utter-

ance using Equation 5.1. Let the minimum non-zero value of the SBSF function be

Smin. Let, S[0] = Smin.

2. Compute the order N of FFT as given below

N = 2⌈log(2M)/log(2)⌉ (5.2)

3. Compute S1[m] as S[m]γ after appending (N/2−M) number of Smin to the sequence

S[m], where γ = 0.0011

4. Construct the symmetric part of the sequence S1[m] by lateral inversion. The resulting

sequence is positive and symmetric. So, it resembles the magnitude spectrum of an

arbitrary real signal. Let’s call this sequence S[K].

5. The IDFT of S[K] is computed. The resultant signal is the root cepsrum [40] and

the causal portion of the same is a minimum phase signal [41]. Let’s call this causal

sequence sc[n].

6. A single sided Hanning window is applied on sc[n] and its magnitude spectrum

1A small value of γ is chosen to reduce the dynamic range of SBSF
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Smag[K] is computed. The size of the window applied is

Nc =
Length o f SBSF

Window scale f actor (WSF)
(5.3)

7. Peaks in Smag[K] are detected and they are locations of significant spectral change.

Speech signal

Boundaries

Sub-Band Spectral

Flux (SBSF)

computation

    SBSF

Symmetrise SBSF

function

E[k], Magnitude

spectrum of

an arbitrary

signal

Raise the power

of E[k] by "gamma"

0 < gamma < 1 

Compute IDFT
Root cepstrumSingle sided Hanning

window and compute

magnitude spectrum

Magnitude

spectrum
Remove mean,

normalize,

detect peaks and

apply threshold

Fig. 5.2: Steps involved in SBSF based boundary detection algorithm

Figure 5.3 illustrates with an example, the outputs of various blocks in SBSF based

boundary detection algorithm.

49



−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

A
m

p
li

tu
d

e
 −
−

>

Time (s) −−>

(a) Speech signal

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

S
B

S
F

 −
−

>

Time (s) −−>

(b) Sub-band spectral flux

0

0.02

0.04

0.06

0.08

0.1

0 π 2π

M
a
g

n
it

u
d

e
 −
−

>

Angular Frequency −−>

(c) SBSF symmetrized to resemble magnitude

spectrum

0.988

0.99

0.992

0.994

0.996

0.998

1

0 π 2π

M
a
g
n
it

u
d
e
 −
−

>

Angular Frequency −−>

(d) Magnitude spectrum with reduced dynamic

range

0.001

0.002

0.003

0.004

0 100 200 300 400 500

A
m

p
li

tu
d
e
 −
−

>

Quefrency (samples) −−>

(e) Root cepstrum

0.991

0.992

0.993

0.994

0.995

0 0.25π 0.5π 0.75π

M
a
g
n
it

u
d
e
 −
−

>

Angular Frequency −−>

(f) Root cepstral smoothed magnitude spectrum
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(g) Smoothed version of SBSF with threshold. Peaks above the threshold are locations of signifi-

cant spectral change

Fig. 5.3: Outputs of various blocks in SBSF based boundary detection algorithm
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5.4 The modified hybrid segmentation approach

A syllable can be defined in terms of STE as explained in Chapter 2. When the inverted STE

is used as a boundary detector, the physical interpretation of detected low energy locations

are syllable boundaries. On the other hand, when SBSF is used as a boundary detector, it

gives phone boundaries if the particular phone transition is accompanied by a significant

change in spectral characteristics. This property is not true for all phone transitions, eg. a

transition from a vowel to a semi-vowel. Although SBSF has the potential for correcting

certain phone boundaries directly, the new hybrid segmentation algorithm uses SBSF only

for syllable boundary correction.

Correction rules in hybrid segmentation have to be modified, primarily to incorporate

additional cues given by SBSF. Another change is the use of thresholds. Previously, all peaks

of the smoothed and inverted STE were used for correction and a peak was chosen based on

the proximity to boundary given by HMM. The height of the peak is also important. After

smoothing inverted STE and SBSF, the DC component is removed (mean is made zero) and

the signal is normalized between -1 and +1. Only peaks above some threshold (peaks above

the line “y = threshold”) are considered as boundaries.

5.4.1 Modified correction rules

The main objective of the new correction rules is not to increase the number of corrections,

but to perform more reliable corrections. In the previous algorithm, syllable boundaries

at nasals, fricatives and affricates were not corrected using STE. This is remedied here.

Another objective is to perform only corrections of high confidence.

Similar to the previous chapter, the correction rules depend only on the two phones ad-

jacent to the boundary. Say, a decision has to be made as to whether a boundary between
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syllable1 and syllable2 is to be corrected. Let syllable1 be represented as “P∗ep” and syl-

lable2 be represented as “bpP∗”, where P∗ is a sequence of zero or more phones, bp is the

first phone of syllable2 and ep is the last phone of syllable1. The decision depends only on

bp and ep.

Stop consonants (‘b’, ‘bh’, ‘d’, ‘dh’, ‘dx’, ‘dxh’, ‘dxhq’, ‘dxq’, ‘g’, ‘gh’, ‘gq’, ‘k’,

‘kh’, ‘khq’, ‘kq’, ‘p’, ‘t’, ‘th’, ‘tx’, ‘txh’) are non continuant sounds [32] with two phases

namely, closure and burst. Stop consonants are produced by building up pressure behind

a total constriction somewhere in the oral tract (i.e. closure) and then suddenly releasing

the pressure (i.e. burst). When bp is a stop consonant, irrespective of ep, there will be a

significant dip in energy because of closure. Although this is true for all stop consonants,

only unvoiced stop consonant boundaries are corrected for the following reason. For voiced

stops (‘b’, ‘bh’, ‘d’, ‘dh’, ‘dx’, ‘dxh’, ‘dxhq’, ‘dxq’, ‘g’, ‘gh’, ‘gq’), there is a small amount

of low frequency energy called voice bar, even in closure. In unvoiced stops (‘k’, ‘kh’,

‘khq’, ‘kq’, ‘p’, ‘t’, ‘th’, ‘tx’, ‘txh’), because of the absence of voicing during closure, there

is a stop gap.

For sibilant fricatives and affricates, the energy is prominent only in the higher frequency

bands and hence SBSF can be used. Similarly, for nasals, the energy is prominent only

in the lower frequency bands, and hence, it should be possible to use SBSF for detecting

their boundaries. Unlike fricatives and affricates, the influence of SBSF on nasals are not

consistent. Thus, SBSF was used for correcting nasals only when bp is a stop consonant. A

hierarchy of rules is proposed below:

• If bp == (unvoiced stop), use STE with threshold1 for correction.

• Else if ep == (unvoiced stop), use STE with threshold2 for correction.

• Else if (bp == (fricative OR affricate)) XOR (ep == (fricative OR affricate)), use

SBSF with threshold3 for correction.

52



• Else if (bp == (unvoiced stop)) AND (ep == (nasal)), use SBSF with threshold3 for

correction.

• Else do not correct.

For experiments in this chapter, the values of thresholds were empirically chosen to

be threshold1 = 0.5, threshold2 = 0.2 and threshold3 = 0.3. Apart from these thresholds,

a durational threshold is also used during correction. The new syllable level label file is

initialized with the timestamps of the label file obtained using HMMs. Boundary corrections

are performed in the left to right order with respect to the waveform. A boundary correction

is made only if it results in the duration of the present syllable and the succeeding syllable

to be greater than 100 ms.

5.4.2 The modified hybrid segmentation algorithm

Unlike the algorithm proposed in the previous chapter, the process is started with HMMs

directly. HSMMs were no longer needed. As an additional cue and better correction rules

were used, HSMMs did not make any difference. Baseline automatic HMM segmentation

is performed initially. Then syllable boundary correction is performed using the new rules.

The acoustic realization of the first and last phones in a syllable is significantly different

from the ones in the middle. So, these phones are modeled separately by adding the sylla-

ble positional context. For instance, phone transcription of syllable “d� к(d uu k)” becomes

“beg-d uu k end” after adding context information. Syllables with a vowel in isolation are

modeled separately. Flat start initialization is performed for syllable context phone models.

Syllable level embedded training is performed to train these syllable context phone mod-

els. Forced alignment is performed using syllable context phone models and then boundary

correction is performed again. Syllable level embedded re-estimation is repeated to re-

fine the models and finally forced alignment is performed within syllables to obtain phone

53



boundaries. Figure 5.4 shows the sequence of steps involved in the new hybrid segmentation

algorithm in the form of a flowchart.

Utterance level embedded re-estimation of monophone HMMs 

after flat start initialization, followed by forced alignment.

Syllable boundary correction using STE & SBSF

Syllable level embedded re-estimation of syllable 

context phone HMMs after flat start initialization

HMM-based forced alignment

Syllable boundary correction using STE & SBSF

to obtain the final syllable level segmentation

Splice waveforms at the syllable level and perform embedded

training on syllable waveforms to refine 

syllable context phone models

HMM-based forced alignment, restricted within syllables

to obtain phone boundaries

The position of the current phone in the current

syllable is added as context to phones

Fig. 5.4: Steps involved in the new hybrid segmentation algorithm
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5.5 Experiments and results

5.5.1 Experimental setup

Three datasets were used for experiments:

1. Dataset 1 - 717 utterances (2.25 hrs) of Tamil, spoken by a single native female

speaker

2. Dataset 2 - 871 utterances (2 hrs) of Hindi, spoken by a single native male speaker

3. Dataset 3 - 873 utterances (1.75 hrs) of Hindi, spoken by a single native female

speaker

For training HMMs, MFCCs were used as features and all vowels were modeled as

5-state, 2-mixture models, and all consonants were modeled as 3-state, 2-mixture models.

WSF was set as ‘6’ in STE based group delay segmentation algorithm and it was set as ‘2’

in SBSF based segmentation algorithm.

5.5.2 Discussions

Figure 5.5 illustrates the boundary refinement process with an example from Dataset 3.

Panel A in Figure 5.5 shows the waveform. Panel B shows the syllable level segmentation

given by the baseline HMM approach. Panels C to F show the output of the hybrid seg-

mentation algorithm in various stages. Panel G shows the spectrogram. Panel H shows the

smoothed inverted STE function and its peaks. The stippled line in the plot is the thresh-

old at ‘0.2’ (threshold2) and the dashed line is the threshold at ‘0.5’ (threshold1). Panel I

shows smoothed SBSF and its peaks. The dotted line in the plot is the threshold at ‘0.3’

(threshold3).

55



F
ig

.
5

.5
:

B
o

u
n

d
ar

y
re

fi
n

em
en

t
il

lu
st

ra
te

d
w

it
h

an
ex

am
p

le

56



The location of two syllable boundaries are misplaced by a large margin in the output

of the baseline HMM segmentation. The two boundaries are:

1. Boundary 1 between syllables “кr(‘k’ ‘a’ ‘r’)” and “tA(‘t’ ‘aa’)”. The incorrect syl-

lable segment “tA” is highlighted in Figure 5.6(a).

2. Boundary 2 between syllables “хoj(‘kh’ ‘o’ ‘j’)” and “кr(‘k’ ‘a’ ‘r’)”. The incorrect

syllable segment “кr” is highlighted in Figure 5.6(b).

(a) Incorrect syllable segment tAis highlighted (b) Incorrect syllable segment кris highlighted

(c) The boundary between кrand tAis corrected using

STE. The corrected syllable segment tAis highlighted

(d) The boundary betweenхojandкris corrected using

SBSF. The corrected syllable segment кris highlighted

Fig. 5.6: Correction of incorrect boundaries in Figure 5.5, shown step-by-step

The second transcription panel shows the result after the first iteration of boundary cor-

rection. Boundary 1 was corrected using STE as the succeeding syllable “tA(‘t’ ‘aa’)” begins

57



with an unvoiced stop consonant. The corrected syllable segment “tA(‘t’ ‘aa’)” is highlighted

in Figure 5.6(c). Boundary 2 was moved to an incorrect location using SBSF. Boundaries of

SBSF correspond to phone transitions with significant spectral change. There was a bound-

ary within syllable “хoj(‘kh’ ‘o’ ‘j’)”, before the realization of affricate ‘j’ and there was

also a boundary at the end of the syllable (after the realization of affricate ‘j’). As the initial

boundary given by HMM was closer to the one within the syllable, it was moved to that

location incorrectly.

The third transcription panel shows the output of the second iteration of HMM based

forced alignment. Boundary 2 has come closer to the actual boundary location. This

is because of adding syllable positional context to phones and performing embedded re-

estimation at the syllable level. The fourth transcription panel shows the final syllable label

file, obtained after performing the second iteration of boundary correction. Boundary 2 was

moved to the correct location using SBSF. The corrected syllable segment “кr(‘k’ ‘a’ ‘r’)”

is highlighted in Figure 5.6(d).

In Dataset 3 (Hindi), ‘7213’ syllable boundaries had bp as an unvoiced stop consonant

and out of that ‘5930’ were corrected using STE. This justifies the use of threshold as 82.2%

of possible boundaries were corrected with high confidence. Further, ‘172’ of the uncor-

rected boundaries were corrected using SBSF because their ep was a nasal. This adds an-

other 2.4%. Dataset 3 also had ‘1129’ syllable boundaries with only ep as an unvoiced stop

consonant and out of that ‘1010’ were corrected using STE. Overall, 66.76% of the syllable

boundaries were obtained using HMMs, 21.71% from STE and 11.53% from SBSF.

For Tamil, the phone transcription does not distinguish between voiced and unvoiced

stop consonants. But, the algorithm intends to correct only boundaries with unvoiced stop

consonants. In Dataset 1 (Tamil), ‘12684’ syllable boundaries had bp as a stop consonant

and out of that ‘6254’ were corrected using STE, ‘1191’ were corrected using SBSF. The
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boundaries corrected using STE mostly turn out to be the ones with unvoiced stop conso-

nants as shown in Figure 5.7.

Panel A in Figure 5.7 shows the waveform. Panels B and C show the syllable and phone

level segmentation obtained using HMMs. Panels D and E show the syllable and phone level

segmentation obtained using hybrid segmentation. Panel F shows the spectrogram. Panel

G shows the output of STE based group delay segmentation along with its boundaries. The

boundaries labeled as ‘1’ are above threshold1. There are four boundaries with bp as a stop

consonant:

1. Boundary 1 between syllables “��ñ (‘n’ ‘a’ ‘nd’)” and “8(‘t’ ‘a’)”.

2. Boundary 2 between syllables “PaXñ (‘m’ ‘aa’ ‘y’)” and “=�ñ (‘t’ ‘uu’ ‘ng’)”.

3. Boundary 3 between syllables “=�ñ (‘t’ ‘uu’ ‘ng’)” and “
(‘k’ ‘i’)”.

4. Boundary 4 between syllables “r(ñ (‘w’ ‘i’ ‘tx’)” and “(aXñ (‘tx’ ‘aa’ ‘y’)”.

The realization of the stop consonants only after Boundary 1 and Boundary 4 are un-

voiced. These boundaries were corrected as the group delay peak crossed the threshold that

was empirically set. For, Boundary 2 and Boundary 3, there was no peak above the threshold

in the vicinity and hence they were not corrected.

Figure 5.8 illustrates the importance of syllable level embedded re-estimation with an

example. Panels B and C show the syllable and phone level segmentation obtained using

HMMs. Panels D and E show the syllable and phone level segmentation obtained using

hybrid segmentation. Panel F shows the spectrogram. Panel G shows the output of STE

based group delay segmentation along with its boundaries. The location of two syllable

boundaries are misplaced by a large margin in the output of HMM based segmentation. The

two boundaries are:

1. Boundary 1 between syllables “�(‘n’ ‘a’)” and “��ñ (‘a’ ‘k’)”.
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2. Boundary 2 between syllables “��ñ (‘a’ ‘k’)” and “�a(‘k’ ‘aa’)”.

The syllable segment “�(‘n’ ‘a’)” given by HMMs actually includes the region corre-

sponding to both “�(‘n’ ‘a’)” and “��ñ (‘a’ ‘k’)”. The syllable segment “��ñ (‘a’ ‘k’)” is

wrongly labeled in the closure region of the next segment. Boundary 2 was corrected using

STE and in subsequent forced alignment boundary 1 got corrected because of syllable level

embedded re-estimation.

5.5.3 Comparison with baseline segmentation

In the baseline HMM based segmentation, after flat start initialization ‘14’ iterations of em-

bedded re-estimation was performed. Syllable positional context is added to phones (first

and last phones in a syllable are treated separately) before syllable level re-estimation. The

number of classes increases because of this. For instance, the number of context indepen-

dent phones in dataset 3 (Hindi) is ‘57’ and it increases to ‘158’ after adding context. These

syllable positional context phones are initialized with global mean, global variance and ‘7’

iterations of re-estimation is performed. After syllable boundary corrections are performed

for the second time, another ‘7’ iterations of re-estimation is done. Totally, syllable level

embedded re-estimation is performed for ‘14’ iterations like sentence level re-estimation.

When the final phone models with the added syllabic position context of hybrid segmen-

tation is used for sentence level forced alignment, the total acoustic likelihood increases

compared to monophone models obtained from baseline HMM segmentation. This is true

for all the three speakers used. Also, mostly even the average log probability per frame for

various categories of phones like fricatives, vowels etc. increases as shown in Table 5.1,

Table 5.2 and Table 5.3.
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Table 5.1: Average log probability per frame for dataset 1 (Tamil, female speaker)

Method
Average log probability per frame

Nasals Fricatives Affricates Semi- Vowels Stop Overall

Vowels Consonants

Hybrid -69.67 -79.05 -79.98 -73.99 -67.23 -83.01 -72.99

HMM-FS -70.86 -78.48 -80.40 -74.89 -68.01 -84.41 -73.93

Table 5.2: Average log probability per frame for dataset 2 (Hindi, male speaker)

Method
Average log probability per frame

Nasals Fricatives Affricates Semi- Vowels Stop Overall

Vowels Consonants

Hybrid -69.02 -77.74 -79.46 -74.16 -64.49 -82.05 -70.46

HMM-FS -69.80 -78.24 -80.22 -74.60 -65.07 -82.82 -71.29

Table 5.3: Average log probability per frame for dataset 3 (Hindi, female speaker)

Method
Average log probability per frame

Nasals Fricatives Affricates Semi- Vowels Stop Overall

Vowels Consonants

Hybrid -75.06 -77.71 -80.70 -76.90 -69.31 -83.16 -74.85

HMM-FS -74.91 -78.50 -81.00 -77.71 -69.82 -84.00 -74.99

5.5.4 Performance evaluation

With the segmentation given by the hybrid method and the baseline HMM based method,

conventional phone based HTS systems [14] were built for dataset 1, dataset 2 and dataset

3. Additionally, STRAIGHT analysis-synthesis [46] method was used for dataset 2. Pair

comparison (PC) tests [42] were performed. For these comparisons, the HTS system built
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with the hybrid segmentation method is referred to as “A” and the HTS system built with

baseline HMM based segmentation is referred to as “B”. The results of pair comparison

tests show that there is an improvement in synthesis quality as shown in Table 5.4, Table 5.5

and Table 5.6.

Table 5.4: Pair comparison tests using phone based HTS for dataset 1 (Tamil, female

speaker)

A-B B-A A-B+B-A

67.5 22.5 72.5

Table 5.5: Pair comparison tests using phone based HTS for dataset 2 (Hindi, male speaker)

A-B B-A A-B+B-A

72.2 22.2 75

Table 5.6: Pair comparison tests using phone based HTS for dataset 3 (Hindi, female

speaker)

A-B B-A A-B+B-A

63 26 68.5

The syllable based HTS proposed in [15] used the semi-automatic labeling approach

explained in Chapter 2. A syllable based HTS system for Tamil was built with dataset 1

and the proposed hybrid segmentation algorithm. It was compared to a similar system built
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with semi-automatic segmentation. The results of pair comparison test show that hybrid

segmentation gets 79.7% preference as shown in Table 5.7. The syllable based HTS system

built with the hybrid segmentation method is referred to as “A” and the one built with semi-

automatic segmentation [15] is referred to as “B”.

Table 5.7: Pair comparison tests using syllable based HTS for dataset 1 (Tamil, female

speaker)

A-B B-A A-B+B-A

78.2 18.8 79.7

With the segmentation given by the hybrid method and the baseline HMM based method,

a syllable USS system [47] was built for dataset 1. Syllable based USS suffers from prob-

lems related to prosody. Correcting segmentation does not necessarily correct prosody.

Hence, the improvement in USS was not as significant as HTS as shown in Table 5.8.

Table 5.8: Pair comparison tests using syllable based USS for dataset 1 (Tamil, female

speaker)

A-B B-A A-B+B-A

66.7 42.9 61.9

Hybrid segmentation gives significant improvement in likelihood for stop consonants.

This was reflected in the synthesized speech. Geminates (two stop consonants together)

were always pronounced with more clarity when compared to HMM segmentation. Online

phone based HTS synthesizers for Tamil, Hindi, Bengali, and Telugu built using the pro-

posed segmentation algorithm can be found at “http://www.iitm.ac.in/donlab/hts/”. Some

65



synthesized examples of Hindi and Tamil can be found at

“http://www.iitm.ac.in/donlab/hts/samples.php”

5.5.5 Experiments with other languages

The segmentation algorithm was used for segmenting three more languages:

1. Dataset 4 - 1631 utterances (3.5 hrs) of Telugu, spoken by a single native male

speaker

2. Dataset 5 - 796 utterances (1.3 hrs) of Bengali, spoken by a single native male speaker

3. Dataset 6 - 1132 utterances (1.2 hrs) of Indian English, spoken by the same speaker

as Dataset 1. The text used was same as that of ARCTIC databases [48].

The likelihood improvement similar to Hindi and Tamil were observed for Telugu, Ben-

gali and Indian English as shown in Table 5.9, Table 5.10 and Table 5.11.

Table 5.9: Average log probability per frame for dataset 4 (Telugu, male speaker)

Method
Average log probability per frame

Nasals Fricatives Affricates Semi- Vowels Stops Overall

Vowels Consonants

Hybrid -76.00 -78.51 -80.78 -79.52 -76.07 -82.79 -78.00

HMM-FS -76.23 -78.94 -80.31 -79.44 -76.13 -83.34 -78.13

Table 5.10: Average log probability per frame for dataset 5 (Bengali, male speaker)

Method
Average log probability per frame

Nasals Fricatives Affricates Semi- Vowels Stops Overall

Vowels Consonants

Hybrid -69.05 -76.93 -77.22 -78.97 -65.48 -80.21 -72.48

HMM-FS -70.08 -77.21 -77.12 -79.43 -65.81 -80.46 -72.79
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Table 5.11: Average log probability per frame for dataset 6 (Indian English, male speaker)

Method
Average log probability per frame

Nasals Fricatives Affricates Semi- Vowels Stops Overall

Vowels Consonants

Hybrid -67.92 -77.28 -78.47 -73.42 -60.06 -80.99 -69.64

HMM-FS -68.54 -78.20 -78.94 -74.15 -61.10 -81.48 -70.16

For Indian English, the phone transcription was taken from CMU ARCTIC database

[48] as it is. The NIST syllabification software [49, 50] was used to syllabify the phone

sequence. Phonetic sequence corresponding to a phrase is given as input to the software

to obtain the syllabic transcription. The syllabification obtained using this procedure was

incorrect in a few places. The proposed hybrid segmentation algorithm is sensitive to syl-

labification rules. Hence, some boundaries were moved to incorrect locations for Indian

English.

Figure 5.9 shows an example phrase from Dataset 6. The phrase shown is “A rifle shot

beyond the ridge” and its corresponding phonetic sequence is /ah r ay f ax l sh ao t b ih y

ao n d dh ah r ih jh/. The phonetic sequence was syllabified as “ah ray faxl shao tbih yaond

dhah rihjh”. Panel A in Figure 5.9 shows the waveform. Panels B and C show the syllable

level segmentation given by the baseline HMM approach and hybrid approach respectively.

Panel D shows the spectrogram. Panel E shows the smoothed inverted STE function and its

peaks. Panel F shows smoothed SBSF and its peaks.

The syllable boundaries shown using dashed lines in Figure 5.9 were moved to more ac-

curate locations using SBSF. The syllable “shao” was moved to an incorrect location (shown

using dotted lines). This is because of incorrect syllabification. The actual syllabification in

that place is “shaot bih”. The stop consonant ‘t’ was moved incorrectly to the next syllable

during syllabification. This led to the improper alignment of that syllable.
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5.6 Summary

In this chapter, the role of spectral change as a cue was discussed. The use of sub-band spec-

tral flux (SBSF) to detect spectral changes was motivated. A boundary detection technique

which uses root cepstral smoothing and SBSF was proposed. Next, improvements to hybrid

segmentation algorithm were proposed. The new algorithm was experimented on Tamil and

Hindi data. The results were compared to baseline HMM segmentation and the improve-

ments were discussed in detail with a few examples. Pair comparison tests were performed

and it shows that HTS systems built with hybrid segmentation gets more preference.
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CHAPTER 6

Conclusions and Future Work

Speech synthesis requires accurate segmentation of data so that robust models can be built

for the fundamental units. Although machine learning has been very successful for seg-

mentation, it is not accurate enough to train high quality TTS systems. Machine learning

techniques are robust on the average while signal processing techniques are accurate in the

particular. In this work, an attempt has been made to synergize the benefits of knowledge-

based domain specific signal processing and machine learning to obtain accurate phone level

segmentation.

Criticism of the proposed work:

• Accurate syllabification rules are required to get the best out of the proposed seg-

mentation algorithm. Boundary correction using incorrect syllabification can make

the boundary location worse as explained in Section 5.5.5.

Future work:

Some of the possible extensions of this thesis work are described below:

1. One shortcoming of the proposed work is the lack of a mechanism to detect bound-

aries of all nasals. This can be explored.

2. The syllabification for Hindi and Tamil was based on a set of rules. Similar to per-

forming boundary corrections based on proximity to signal processing cues, it can be
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explored, if it can also be used to correct syllabification. For a new Indian language,

syllabification rules of either Hindi or Tamil can be chosen based on closeness and

a dictionary of word to syllable mappings can be created using these rules. Then

the syllabification in the dictionary can be corrected by applying signal processing

techniques on the available speech data of the language.

3. Ground truth labels were not available for Hindi and Tamil data used for experiments

in this thesis. The segmentation algorithm was used for training HTS systems and it

was evaluated by subjective tests on the synthesis quality. Objective approaches to

either measure the segmentation accuracy directly or the quality of synthesis can be

explored.
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