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ABSTRACT
Target speech extraction is a specific case of source separation where
an auxiliary information like the location or some pre-saved anchor
speech examples of the target speaker is used to resolve the permu-
tation ambiguity. Traditionally such systems are optimized based
on signal reconstruction objectives. Recently end-to-end automatic
speech recognition (ASR) methods have enabled to optimize source
separation systems with only the transcription based objective. This
paper proposes a method to jointly optimize a location guided target
speech extraction module along with a speech recognition module
only with ASR error minimization criteria. Experimental compar-
isons with corresponding conventional pipeline systems verify that
this task can be realized by end-to-end ASR training objectives with-
out using parallel clean data. We show promising target speech
recognition results in mixtures of two speakers and noise, and dis-
cuss interesting properties of the proposed system in terms of speech
enhancement/separation objectives and word error rates. Finally, we
design a system that can take both location and anchor speech as in-
put at the same time and show that the performance can be further
improved.

Index Terms— end-to-end speech recognition, target speech ex-
traction, neural beamformer

1. INTRODUCTION

Speech separation which involves extracting individual speech
sources from a mixed speech signal has become an important pre-
processing step for many speech processing applications. Far-field
speech recognition devices, such as Amazon Alexa and Google
Home have become omnipresent [1]. These devices are used in
challenging home environments [2] and hence combining source
separation and denoising with automatic speech recognition (ASR)
is becoming crucial [3, 4]. Conventionally, frontend systems to per-
form speech separation and speech enhancement have been trained
with a signal reconstruction objective with the non-overlapped sig-
nals as targets. Such systems might not be suitable for (1) real data,
and (2) for applications where the target is different from recon-
structing a clean signal. End-to-end (E2E) speech recognition [5–7]
and other neural advances in ASR have made it easier to train
frontend denoising [8–10], dereverberation [11] and speech separa-
tion [12–15] systems only based on speech recognition objectives.

Depending on the choice of number of targets, there are broadly
two methods for speech separation - (1) unbiased estimation and (2)
biased estimation. In unbiased estimation, the blind separation sys-
tem is usually required to estimate the separation for each source
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simultaneously with equal importance. Deep clustering (DC) [16]
and permutation invariant training (PIT) [17] are two popular tech-
niques for unbiased blind source separation. The PIT method to han-
dle a mixture of two speakers was extended in [15, 18] to train with
an end-to-end speech recognition objective to output two individual
character sequences. These unbiased estimation approaches suffer
from two limitations. First, it has a permutation ambiguity in map-
ping between the speakers in the mixture and the separated outputs.
Second, it has very high memory and computational demands pro-
portional to the number of possible source permutations

In contrast, in biased separation, an additional source of infor-
mation is assumed to be available, which helps in identifying the
target speaker. For example, in [19, 20], the location in terms of the
azimuth angle is fed as an angle feature to extract the speaker of
interest. In [21–24], an anchor speech utterance consisting of only
the target speaker voice is passed to inform the separation system on
which speaker to extract. However all these systems require parallel
clean speech. Recently, an extension of [21] by training the anchor
speech based single channel target speech extraction using an E2E
speech recognition objective was proposed in [25]. Including multi-
channel processing is crucial in tasks like this.

The contributions from this paper are as follows: (1) we pro-
pose a location guided multi-channel target speech extraction system
with a carefully designed neural network optimized with an ASR ob-
jective and only the target speaker’s transcription as the target, (2)
we also include noise in the data apart from interference and per-
form simultaneous denoising and separation, (3) we perform a de-
tailed analysis with many possible differentiable beamformers as the
unique nature of the problem gives us more possibilities as the steer-
ing vector is given as the input and (4) we propose a hybrid target
speech extraction system that takes both location and anchor speech
to further improve the performance. Additionally, we also evaluate
our system in terms of a separation and a perception metric apart
from word error rate (WER). This is possible because we use an ex-
plainable AI approach to model the network where the intermediate
output can be interpreted as the separated signal.

2. THE PIPELINE APPROACH

The pipeline approach where the frontend location aware target
speech extraction is trained independent of the ASR system is ex-
plained in this section.

2.1. Input Features
Let Y1, Y2, · · · , YM be theM -channel input signal in the short-time
Fourier transform domain, with Ym ∈ CT×F , where T is the to-
tal number of frames and F is the total number of frequency com-



ponents. Similar to [19] and [20], three types of features are con-
catenated and given as input: (1) spectral, (2) spatial and (3) angle
features. Magnitude of the input signal at channel 1 is used as the
spectral feature i.e. |Y1|.

Inter-microphone phase difference (IPD) pi(t, f) encodes spa-
tial information and it is calculated as,

pi(t, f) =
1

M
[cos∠(

yi1(t, f)

yi2(t, f)
) + j sin∠(

yi1(t, f)

yi2(t, f)
)], i = 1 :M,

(1)
where ym(t, f) is the input signal at channelm, time t and frequency
f , i represents an entry in a microphone pair list defined for calcu-
lating the IPD; and i1 and i2 are the index of microphones in each
pair. We calculate IPD features for M pairs and then concatenate
their real and imaginary parts together and hence Pm ∈ RT×2F .

The spectral and spatial features are one way of representing
the multichannel input signal but they don’t specify the identity of
the target. In our task the location in terms of the azimuth angle of
the target speaker and all the interfering speakers are known. This
crucial information is encoded in the directional angle feature which
is formulated with a pre-masking step similar to [19] as,

dn(t, f) = |
M∑
i=1

ei,fn pi(t, f)|, (2)

an(t, f) = dn(t, f) ∗ I(dn(t, f)− ds(t, f))s=1:N , (3)

where n is the speaker index,N is the number of speakers, I(.) is the
indicator function that outputs 0 if the input difference is negative for
any of the “s = 1 : N” cases and 1 otherwise and ei,fn represents the
conjugate of the steering vector coefficient of speaker n, direction of
arrival at microphone pair i, and frequency f which can be calculated
from the azimuth angle. The angle feature for each speaker An ∈
RT×F are concatenated in such a way the target speaker’s is always
placed first.

2.2. Mask Based Beamformer
A neural network that outputs a spectral mask is trained by using
the groundtruth clean target speaker’s signal as the target and takes
the three types of features defined in Section 2.1 as input after con-
catenation. The masking network is trained separately and its output
is fed to a beamformer in a pipeline like [19]. The phase sensitive
magnitude spectral approximation (PS-MSA) loss [26] LPS is used
to optimize the masking network and it is defined below:

LPS =
1

T ∗ F
∑
t,f

||wS(t, f)|y1(t, f)|

− |s1(t, f)|max(cos(θy1(t, f)− θs1(t, f)), 0)||
2, (4)

wherewS(t, f) ∈ [0, 1] is the output target speech mask of the mask-
ing network, |s1(t, f)| and θs1(t, f) are the magnitude and phase
spectrum of the target speech signal and θy1(t, f) is the phase spec-
trum of the input signal at time t, frequency f and channel 1. For
estimating a beamforming filter, we will also need a residual spec-
tral mask that corresponds to the interference and noise in the signal.
Since the masking network is optimized to output only the speech
mask in Eq (4), we calculate the residual mask from the speech mask
as,

wV(t, f) = 1− wS(t, f). (5)
The estimated masks are used to compute the speech and resid-

ual power spectral density (PSD) matrices ΦS(f) ∈ CM×M and
ΦV(f) ∈ CM×M at frequency f as follows:

Φk(f) =
T∑

t=1

wk(t, f)y(t, f)y
H(t, f) where k ∈ {S,V}, . (6)

Fig. 1: Proposed End-to-End Architecture which takes the spectral
{Ym}Mm=1, spatial {Pm}Mm=1 and angle {An}Nn=1 features as input
to extract the target speech signal X with an ASR objective

where H denotes the conjugate transpose. The PSD matrices are used
to compute the target speech extracting minimum variance distor-
tionless response (MVDR) beamforming filter bMVDR(f) ∈ CM at
frequency f as follows:

bMVDR(f) =
ΦV(f)

−1ΦS(f)

Trace(ΦV(f)−1ΦS(f))
u, (7)

where u ∈ {0, 1}M is a one-hot vector to choose a reference micro-
phone. The separated target speech signal x(t, f) ∈ C is extracted
by applying the beamforming filter estimated in Eq. (7) on the input
signal as:

x(t, f) = bH
MVDR(f)y(t, f). (8)

We call the beamformer used here as MVDR-1 as only the speech
mask wS(t, f) comes directly from the masking network.

3. END-TO-END TARGET SPEAKER ASR

3.1. Joint Optimization
We propose to connect the masking network and the beamformer
with an E2E ASR module and train all the parameters of the com-
bined network only based on the text transcription of the target
speaker given as character sequence C = (c1, c2, · · · ) as shown
in Figure 1, unlike Eq. (4) which requires the target signal. As
the beamformer is included in the computational graph, reference
vector u introduced in Eq. (7) is softly estimated based on an at-
tention mechanism such that

∑
m um = 1 and also included in the

network [8]. The separated signal X by beamforming as in Eq. (8)
is passed through feature transformation and the ASR module as
follows,

T = MVN(Log(MelFilterbank(|X|))) (9)
C = ASR(T ). (10)

Log Mel Filterbank transformation is applied on the magnitude of
X and utterance based mean-variance normalization (MVN) is per-
formed to produce an input T that is suitable for ASR.

3.2. Differentiable Beamformers
Additional to MVDR-1, we also explore other beamformers in the
joint optimization approach. The mask wV(t, f) can be estimated
in the masking network unlike Eq. (5) and we refer to this beam-
former as MVDR-2. We also try the following linearly constrained
minimum variance (LCMV) beamformer which takes the steering
vectors as input and requires only the residual spectral mask from



Table 1: WER (%) on our simulated data comparing the ASR performance of pipeline and E2E approaches

Frontend Row Auxiliary Input Beamformer Post- Fine- Dev Eval
Type ID Location Anchor Method filter tune Avg. HI HN LI LN Avg.

Angle Speech 1-15 16-45 46-90 91-180 Avg.
Pipeline 1 3 7 MVDR-1 7 7 16.0 29.5 28.7 12.5 31.4 13.1 10.2 8.8 13.7 21.1

E2E

2 3 7 MVDR-1 7 7 15.2 28.2 28.1 12.8 30.3 13.0 9.8 9.7 13.7 20.7
3 3 7 MVDR-2 7 7 12.5 23.4 22.2 10.6 25.9 9.3 8.6 6.8 10.8 16.8
4 3 7 LCMV 7 7 17.0 27.9 28.2 14.8 33.5 13.8 10.0 9.0 14.2 21.3
5 3 7 GDR 7 7 13.7 24.9 24.9 11.9 29.4 11.3 8.0 8.7 12.3 18.5
6 3 7 MVDR-2 3 7 13.3 23.4 24.4 11.5 26.5 10.0 7.6 6.3 10.7 17.5
7 3 7 MVDR-2 3 3 11.8 20.7 22.0 10.6 27.0 8.1 7.7 6.0 10.2 15.9

Pipeline 8 7 3 MVDR-2 7 7 21.4 39.8 39.3 20.3 30.2 23.2 20.2 15.6 21.1 30.1

E2E
9 7 3 MVDR-2 7 7 30.8 47.3 46.1 24.4 38.0 30.4 30.2 27.5 30.6 37.1

10 3 3 MVDR-2 7 3 11.8 22.6 21.6 10.2 26.0 10.2 8.5 7.6 11.3 16.4
11 3 3 MVDR-2 3 7 12.9 22.5 24.1 11.5 23.8 9.5 8.1 7.5 10.6 17.2
12 3 3 MVDR-2 3 3 11.8 20.3 21.2 10.6 24.6 7.8 7.0 6.0 9.6 15.4

Table 2: Comparison using SDR & PESQ metrics. PESQ is well correlated with WER in Table 1

Frontend Auxiliary Input Beamformer Post- Fine- SDR PESQ
Type Location Anchor Method filter tune Dev Eval Dev Eval

Angle Speech Avg. HI HN LI LN Avg. Avg. HI HN LI LN Avg.
Input - - - - - -2.93 -6.62 -6.34 -0.36 -1.04 -3.59 1.68 1.49 1.46 1.78 1.82 1.64

Pipeline 3 7 MVDR-1 7 7 5.76 2.25 2.08 7.12 7.07 4.63 2.24 2.01 1.99 2.32 2.31 2.16

E2E

3 7 MVDR-1 7 7 4.18 1.07 0.51 6.01 6.13 3.43 2.25 2.03 2.01 2.36 2.36 2.19
3 7 MVDR-2 7 7 4.80 1.75 1.55 6.57 6.45 4.08 2.31 2.10 2.07 2.40 2.40 2.24
3 7 LCMV 7 7 -0.13 -1.66 -1.67 1.18 1.57 0.15 2.21 2.06 2.03 2.29 2.30 2.17
3 7 MVDR-2 3 3 2.29 2.05 1.86 2.58 1.86 2.09 1.50 1.39 1.40 1.56 1.54 1.47
3 3 MVDR-2 7 3 5.75 2.43 2.74 7.45 7.15 4.94 2.36 2.13 2.14 2.45 2.44 2.29
3 3 MVDR-2 3 3 2.75 2.50 2.30 3.37 3.41 2.90 1.52 1.39 1.40 1.62 1.59 1.50

the masking network as the target speech PSD matrix is not required
here like Eq.-(7).

bLCMV(f) = ΦV(f)
−1Q(f)(Q(f)HΦV(f)

−1Q(f))−1r, (11)

where Q(f) ∈ CM∗N is a matrix with steering vectors of the target
and interfering speakers at frequency f , r ∈ {0, 1}N is a one-hot
vector to choose the target speaker. We also try an interesting hy-
brid Generalized Distortionless Response (GDR) beamformer [27]
formulated as follows:

bGDR(f) = β(f)bMVDR(f) + (1− β(f))bLCMV(f), (12)

where β(f) ∈ [0, 1] is the frequency dependent trade-off factor be-
tween noise reduction with bMVDR(f) in Eq. (7) and interference
reduction with bLCMV(f) in Eq. (11). The estimation of the distor-
tion weight parameter vector β = [β(f)]Ff=1 is incorporated inside
the network as follows:

β = Sigmoid(Linear([|rS|T, |rV|T]T)), (13)

where Linear(·) is an affine transformation with learnable parame-
ters. Features rV and rS are obtained from the PSD matrices:

rk =
1

(M − 1)2

M∑
m=1

M∑
m′=1

[φk(f,m,m
′)]Ff=1 where k ∈ {S,V},

(14)
where φk(f,m,m

′) is m-m′ entry of the PSD matrix Φk(f). An
optional postfiltering step can be included after the beamformer by
performing an elementwise multiplication of the beamformed signal
with the estimated target speech mask.

3.3. Combination of Anchor Speech as Auxiliary Information

Additional to giving the location to find the target, a pre-stored ex-
ample anchor speech utterance can also be passed to aid in the iden-
tification of the target in the mixed signal. We use a multi-channel

extension of [25] and follow the same speaker adaptation procedure.
The magnitude spectrum of the anchor speech is passed through an
embedding network G(.) and then time averaged to get an embed-
ding. An adaptation layer is introduced between the first and second
recurrent layers of the masking network. The output of the first layer
of the masking network is scaled with the embedding using an ele-
ment wise multiplication and the result is passed as input to the next
layer of the masking network.

4. EXPERIMENTS

4.1. Data & Setup
We simulated the data using clean speech from wall street joirnal
(WSJ) corpus [28]. The subset WSJ0 “si tr s”, “dt 05” and “et 05”
were used for training, development and evaluation respectively. For
each utterance, we mixed a single noise source and interference ut-
terance from a different speaker within the same set, so the resulting
simulated data is the same size as the original clean data with 12776,
1206 and 651 utterances for training, development and each type of
evaluation set respectively. A circular microphone array with 6 mics
and diameter of 7cm was used. Six microphone pairs - (1, 4), (2,
5), (3, 6), (1, 2), (3,4) and (5, 6) were used to compute the IPD de-
fined in Eq (1). Room impulse responses (RIR) were generated using
image method [29] randomly from 3,000 different room configura-
tions with the size (length-width-height) ranging from 3m-3m-2.5m
to 8m-10m-6m. The reverberation time T60 is sampled in a range of
0.05s to 0.5s. 3 Point sources - target, interference and noise and the
microphone-array are randomly located in the room. The SIR was
randomly chosen from the set -5, 0, 5 dB and SNR from 0, 5, 10, 20
dB. Four types of evaluation data by fixing either SNR or SIR was
simulated to get a better picture of the noise and interference robust-
ness of the methods - (1) HI (SIR is -5 dB), (2) LI (SIR is 5 dB), (3)
HN (SNR is 0 dB) and (4) LN (SNR is 20 dB).

Our implementation is based on ESPnet [30]. The masking



(a) Input overlapping speech (b) Ground truth IBM mask of target speaker (c) Speech mask from pipeline method

(d) Speech mask from E2E MVDR-1 (e) Speech mask from E2E MVDR-2 (f) Noise Mask from E2E MVDR-2

Fig. 2: Examining the spectral masks generated by the pipeline and E2E methods for an eval file with SNR-0dB and SIR-0dB where the noise
source is music. The masks generated with E2E MVDR-2 in (e) and (f) was by giving both auxiliary information as input with postfiltering.

network consists of two output gate projected bidirectional long
short-term memory (BLSTMP) recurrent layers with 771 and 514
as the cell and projection dimensions respectively. The E2E-ASR
system has a 6-layer VGG-BLSTMP encoder with 320 units for the
BLSTMs and a single layer LSTM decoder with 300 units trained
with a joint CTC/attention criteria [7]. The ASR network is ini-
tialized with a pretrained model that used clean “si tr s” utterances
from both WSJ0 and WSJ1. For the pipeline approach, the masking
network is first trained with the PS-MSA loss defined in Eq (4),
and then it is freezed while fine tuning the ASR network. The first
channel is fixed as the reference while beamforming for the pipeline
methods. The frontend pipeline models were trained with adam
for up to 30 epochs with a patience of 3 epochs and the E2E mod-
els were trained with adadelta for up to 15 epochs with a patience
of 3 epochs. Attention/CTC joint ASR decoding was performed
with score combination with a word-level recurrent language model
from [31] trained on the text data from WSJ. Three different clean
utterances of the target speaker are randomly chosen and concate-
nated as the anchor speech for each mixed utterance. Three linear
layers with rectified linear unit activation after the first two layers
were used for the embedding network G(.) in Section 3.3.

4.2. Results & Discussion
The WER results comparing the pipeline method with the ASR ob-
jective E2E methods for all the evaluation sets are given in Table 1.
For the LN set, addtionally results at different target-interference an-
gle differences are also shown. Overall, the proposed location-aware
end-to-end method with angle features as auxiliary input (rows 1-
6) outperforms the pipeline method except for LCMV beamformer
defined in Eq (11) (row 4). Among the four beamfomers, the per-
formance improves most significantly with MVDR-2 beamformer
(row 3). Introducing a combination of fine tuning and post filter-
ing improves the performance of MVDR-2 further (row 7). For fine
tuning, the masking network of the E2E model is initialized from
the frontend of the pipeline model and then its parameters are fine
tuned with the ASR criteria. The pipeline system using only anchor
speech based on [21] (row 8) (The feedforward layer for estimat-
ing the noise mask alone is optimized with ASR criteria) performs

worse than the location based method (row 1). The combination of
both auxiliary inputs with postfiltering mechanism and fine tuning
(row 12) gives the best performance for most sets with considerable
improvements in the low angle difference of “1-15” in LN set and
the most challenging HI and HN sets.

The source to distortion ratio (SDR) and perceptual evaluation
of speech quality (PESQ) scores computed with the dry signal as
the reference are shown in Table 2 for some systems from Table 1.
Among the methods using only the angle feature, the SDR scores
are best for the pipeline system and PESQ is best for E2E MVDR-
2. E2E system combining both auxiliary features with fine tuning
works best overall in terms of both metrics for all sets. Like shown in
[11], PESQ correlates well with WER when the beamformed signal
is used directly. Introducing postfiltering makes the PESQ scores to
be lower than the input. LCMV severely degrades the SDR score but
the WER results are in general better than the pipeline method. This
shows that SDR doesn’t give a good indication of ASR performance.

The spectral masks generated for an evaluation example using
different methods are shown in Figure 2. The mask generated by the
pipeline MVDR-1 method is close to the ground truth ideal binary
mask (IBM). The mask from the E2E MVDR-1 lacks the fine struc-
ture compared to the pipeline method. The E2E MVDR-2 method
with both auxiliary features and postfiltering has a good formant
structure. Some audio examples for demonstration are given in
https://sas91.github.io/E2E-LGASR.html

5. SUMMARY AND CONCLUSIONS

This paper proposes a multichannel target speech extraction method
using an end-to-end ASR objective, and experimentally showed that
these methods give better performance compared to the correspond-
ing pipeline methods. We also proposed an extension to combine
speaker identity information from both location angle and anchor
speech, which further improves performance. Our future work will
be to explore approaches to improve the performance on cases where
the angle difference between the target and interference is small.
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